Авиамоделизм. юный моделист-конструктор

Изобретение относится к области аэродинамики и может быть использовано при изготовлении аэродинамической модели (АДМ) транспортного средства (ТС), например самолетов, ракет, автомобилей, железнодорожного транспорта и т.д. Задачей изобретения является ускорение процесса создания высокодренированной модели и улучшение качества проведения эксперимента по визуализации ее обтекания. Аэродинамическая модель самолета из фотополимерного материала с дренажной системой выпуска красителей содержит носовую и хвостовую части фюзеляжа с гондолами двигателей, хвостовое оперение и консоль крыла. Модель изготовлена из фотополимера, устойчивого к воде, и снабжена устройством прокачки жидкости для имитации работы двигателя, соединенным гибким тросом с внешним приводом, причем каналы для подачи красителей имеют переходную часть с переменным диаметром и калиброванные сопла для выпуска красителей. Технический результат - возможность промывки каналов внутри модели, уменьшение сроков изготовления модели и возможность проведения испытаний аэродинамической модели из фотополимерного материала в гидродинамической трубе. 5 з.п. ф-лы, 3 ил.

Изобретение относится к области аэродинамики и может быть использовано при изготовлении аэродинамической модели (АДМ) транспортного средства (ТС), например самолетов, ракет, автомобилей, железнодорожного транспорта и т.д.

Изготовление АДМ по традиционной технологии основано на механической обработке составляющих их деталей из высокопрочной стали и алюминиевых сплавов и является весьма трудоемким процессом. Цикл изготовления модели, соответствующей по заданным в техническом задании параметрам, составляет ~6 месяцев и сокращение этого цикла ограничено физическими условиями процесса резания на механообрабатывающем оборудовании, что приводит к значительным срокам доводки аэродинамических характеристик транспортных средств.

Известны цельнометаллические АДМ (патент №172520, опубл. 29.06.1965 г., заявка №94023217, опубл. 10.03.1996 г; патент №377663, опубл. 17.04.1973 г., МПК G01M 9/08), в которых дренирование модели производится вручную.

Общий недостаток традиционного способа изготовления АДМ - большое количество механической и слесарной обработки и, как следствие, высокая трудоемкость (от 500÷800 до 1500÷2000 нормочасов).

Сравнительно новый способ изготовления АДМ с помощью формирования сменной обшивки из композиционного материала защищен патентом №2083967, опубл. 10.07.1997 г., МПК G01M 9/08 - универсальная аэродинамическая модель, преимущественно крыло, содержащая упругий каркас, соединенный со сменной обшивкой. Обшивка изготавливается формованием композиционного материала в заранее изготовленную прессформу, обработанную по профилю нервюр, или корку обшивки из полимерного материала, обработанную по профилю нервюр с последующим покрытием слоем композиционного материала, при этом для дренирования обшивки к внешнему слою приклеивают ленты или диски с калиброванными дренажными отверстиями и штуцерами для подсоединения дренажных трасс. Изготовление прессформы требует 3- или 5-координатной обработки на станках с ЧПУ. Таким образом, недостатком этого изобретения является высокая трудоемкость изготовления модели, которая составляет от 700÷800 до 1500÷2000 нормочасов.

Наиболее близким техническим решением является изобретение по патенту США №6553823, 2002 г., МПК G01M 9/08, представляющее собой полумодель для исследования распределения давления вдоль поверхности крыла, с дренированием ранее определенных сечений по потоку. Крыло изготовлено методом послойного синтеза за несколько итераций. Каналы выращиваются непосредственно при изготовлении крыла.

Существенным недостатком прототипа является необходимость механической доработки большого количества отверстий (сверление, развертка) для очистки от фотополимера узких каналов перед соплами и геометрической калибровки сопел выпуска газа. Последнее необходимо для ламинарности вытекающей струи газа. Соответствующая доработка требует значительных дополнительных затрат времени.

Задачей изобретения является ускорение процесса создания высокодренированной модели и улучшение качества проведения эксперимента в гидродинамической трубе.

Технический результат заключается в возможности промывки каналов внутри модели, уменьшении сроков изготовления модели и возможности проведения испытаний аэродинамической модели из фотополимерного материала в гидродинамической трубе.

Технический результат достигается тем, что аэродинамическая модель самолета из фотополимерного материала с дренажной системой выпуска красителей, состоящая из носовой части фюзеляжа, консолей крыла и центральной части фюзеляжа с гондолами двигателей и хвостовым оперением и кронштейна для крепления модели, изготовлена из фотополимера, устойчивого к воде, и снабжена устройством прокачки жидкости для имитации работы двигателя, соединенным гибким тросом с внешним приводом, причем каналы для подачи красителей имеют переходную часть с переменным диаметром и калиброванные сопла для выпуска красителей.

Технический результат достигается также тем, что в аэродинамической модели самолета длина переходной части составляет не менее 8 диаметров основного канала, а отношение входного диаметра к выходному не менее 2,5.

Технический результат достигается также тем, что в аэродинамической модели самолета длина калиброванного сопла для выпуска красителей составляет менее 2 мм.

Технический результат достигается также тем, что в аэродинамической модели самолета внутренние каналы выращены в процессе создания модели.

Технический результат достигается также тем, что в аэродинамической модели самолета внешний привод размещен за пределами рабочей части трубы.

Технический результат достигается также тем, что в аэродинамической модели самолета части модели соединены между собой полимером, из которого была изготовлена модель.

На фиг.1 изображена модель самолета с дренажной системой.

На фиг.2 представлен привод устройства прокачки жидкости.

На фиг.3 представлена фотография модели самолета с державкой.

Для физического эксперимента по исследованию обтекания новых аэродинамических компоновок используется гидротруба, в которой модель обтекается жидкостью, высокая плотность которой (~10 3 по сравнению с воздухом) обеспечивает полное подобие по числу Re и воспроизведение исследуемых условий обтекания.

Аэродинамическая модель самолета (фиг.1) из фотополимерного материала с дренажной системой выпуска красителей для испытания в гидродинамической трубе состоит из носовой части 1, центральной части фюзеляжа 2 с гондолами двигателей и хвостовым оперением, консолей крыла 3, кронштейна 4 для крепления к державке с приводом прокачивающего узла 5 (фиг.2).

Модель обладает высокой сложностью в сочетании с малыми размерами (фиг.3), поэтому модель (внешнюю и внутреннюю геометрию) изготавливают непосредственно по математическим моделям (без выпуска конструкторской документации) методом быстрого прототипирования.

Полную математическую модель с дренажной системой (фиг.1) разделяют на элементы для обеспечения оптимальной геометрии выращивания на лазерной стереолитографической установке. Составляющие части модели производят из фотополимера, который имеет малую усадку и абсолютно устойчив к воде, например НС300.

Центральная часть фюзеляжа склеивается с консолями крыла и хвостового оперения. Сборка и склейка модели проводится с помощью фотополимера, из которого изготавливается модель. Модель надевается на державку с помощью кронштейна, который вклеивается в центральную часть фюзеляжа. Через державку проходят две трубки для подвода краски, которые соединяются с внутренними каналами. Затем монтируют устройство прокачки воды для имитации работы двигателя и соединяют собранную модель через гибкий трос 6 (фиг.2) с внешним приводом, размещенным за пределами рабочей части трубы.

Каналы подачи красителей 7 (фиг.2) выращиваются непосредственно в материале крыла 3 с выходными отверстиями, диаметр которых позволяет дренировать тонкие элементы модели толщиной порядка 1 мм, с длиной выходного канала, обеспечивающим калибровку потока красителя, и внутренними каналами большего диаметра для подачи красителя к выходным отверстиям. Изогнутый канал для прокладки гибкого троса также выращивается при изготовлении хвостовой части фюзеляжа в процессе лазерной стереолитографии.

Использование данной технологии позволяет значительно сократить время и стоимость производства модели с дренажной системой выпуска многоцветных индикаторных красителей для исследования обтекания в гидротрубе.

Были проведены исследования тестовых моделей для оценки минимально возможных размеров каналов и выходных отверстий высокодренированных агрегатов аэродинамических моделей, разработаны рекомендации для улучшения геометрии каналов с целью повышения их эффективности при испытаниях в гидротрубе.

В процессе проведения эксперимента была проведена отработка геометрии дренажных каналов и выходных сопел, направленная на обеспечение их промывки без механического воздействия и стабилизации выпускаемых из сопел струй индикаторных красителей.

В результате проведенных исследований было предложено использовать геометрию выходных каналов с переменным диаметром, а для стабилизации выпускаемых струй - калиброванные сопла. Соотношение диаметра внешнего канала к диаметру внутреннего, обеспечивающее организацию промывки внутренних каналов от остатков фотополимера, должно быть не менее 2,5, а длина расширяющейся переходной части - не менее 8 диаметров основного канала, при этом длина калиброванных сопел должна быть менее 2 мм.

При такой геометрии канала, в результате уменьшения длины канала с маленьким диаметром, значительно повышается эффективность удаления остатков фотополимерной композиции и при этом геометрия выходных отверстий максимально приближена к кромке оперения. Все это позволяет улучшить качественную картину исследований в гидротрубе. Сборка и склейка модели проводилась с помощью фотополимера, из которого модель была изготовлена. Это позволило обеспечить в месте соединения полную целостность модели, которая проверялась прокачкой жидкости через дренажную систему.

Трудоемкость изготовления модели по традиционной технологии с применением станков с ЧПУ и последующей ручной доводкой аэродинамических поверхностей оценивается от 500-2000 нормочасов в зависимости от размеров модели и сложности конструкции.

Время изготовления данной модели на лазерном стереолитографе ЛС-250 составило 64 часа. Полное время изготовления с постобработкой, сборкой и склейкой составило 5 дней. Трудоемкость изготовления аэродинамической модели самолета по новой технологии составила 120 нормочасов.

1. Аэродинамическая модель самолета из фотополимерного материала с дренажной системой выпуска красителей и внутренними каналами, состоящая из носовой части фюзеляжа, консолей крыла и центральной части фюзеляжа с гондолами двигателей и хвостовым оперением, кронштейна для крепления модели, отличающаяся тем, что модель изготовлена из фотополимера, устойчивого к воде, и снабжена устройством прокачки жидкости для имитации работы двигателя, соединенным гибким тросом с внешним приводом, причем каналы для подачи красителей имеют переходную часть с переменным диаметром и калиброванные сопла для выпуска красителей.

2. Аэродинамическая модель самолета по п.1, отличающаяся тем, что длина переходной части составляет не менее 8 диаметров основного канала, а отношение входного диаметра к выходному не менее 2,5.

3. Аэродинамическая модель самолета по п.1, отличающаяся тем, что длина калиброванного сопла для выпуска красителей менее 2 мм.

4. Аэродинамическая модель самолета по п.1, отличающаяся тем, что внутренние каналы выращены в процессе создания модели.

5. Аэродинамическая модель самолета по п.1, отличающаяся тем, что внешний привод размещен за пределами рабочей части трубы.

6. Аэродинамическая модель самолета по п.1, отличающаяся тем, что части модели соединены между собой полимером, из которого была изготовлена модель.

Похожие патенты:

Изобретение относится к линейному исполнительному механизму, в частности для дистанционного управления регулируемыми компонентами аэродинамических моделей. .

Изобретение относится к области аэродинамических испытаний для измерения аэродинамических сил, действующих на уменьшенную в масштабе модель летательного аппарата в аэродинамической трубе в процессе экспериментального определения летно-технических и тягово-экономических характеристик летательных аппаратов.

Изобретение относится к экспериментальной аэродинамике, а именно к испытаниям моделей в аэродинамических трубах с имитацией силы тяги воздушно-реактивных двигателей, определению силовых параметров сопел и совмещенных тягово-аэродинамических характеристик моделей при обдуве внешним, преимущественно сверхзвуковым, потоком и предназначено для определения погрешностей, вносимых системой подвода рабочего тела реактивных струй.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при исследовании характеристик летательных аппаратов. .

Изобретение относится к транспортному машиностроению. .

Изобретение относится к области экспериментальной аэродинамики, в частности к исследованию проблем аэроупругости летательных аппаратов в области авиационной техники, а именно к разработке моделей для аэродинамических труб. Модель содержит силовой сердечник и крышку, представляющие в сборе единую разборную конструкцию замкнутой аэродинамической формы. Крышка выполнена из единого блока низкомодульного материала типа пенопласта переменной толщины по размаху и хорде несущей поверхности, разделенного на отсеки. Толщины отсеков плавно уменьшаются по направлению от локальных площадок контакта отсеков с сердечником модели к переходным зонам, при этом углы скоса граней отсеков составляют не более 45-50°. Локальные площадки расположены в центральной части каждого из отсеков, а переходные зоны между отсеками образованы за счет уменьшения толщины единого блока материала. Предлагаемый способ изготовления аэродинамической модели включает фрезерование сердечника и крышки на станках с ЧПУ, а также итерационную доводку жесткостных характеристик модели в сборе. Крышку изготавливают формованием или методом быстрого прототипирования из единого блока низкомодульного материала. На его внутренней поверхности создают отсеки с локальными площадками контакта с сердечником со скошенными поверхностями граней отсека и переходные зоны отсеков. Снаружи и изнутри крышку армируют тканью однонаправленного композита, а ее переходные зоны армируют дополнительно. Технический результат заключается в упрощении конструкции аэродинамической модели, ускорении способа ее изготовления. 2 н. и 2 з.п. ф-лы, 4 ил.

Изобретение относится к авиационной технике и касается экспериментальных исследований проблем аэроупругости летательных аппаратов (ЛА) в аэродинамических трубах. При изготовлении упругоподобных моделей ЛА на станках с ЧПУ производят предварительный и поверочный расчеты математической модели лонжерона, по результатам которых изготавливают лонжерон из стали или алюминиевого сплава методом высокоскоростного фрезерования на станке с ЧПУ с учетом подобия массово-инерционных и жесткостных характеристик изготавливаемого силового каркаса-лонжерона силовому каркасу натурного агрегата ЛА. Нижнюю формообразующую поверхность модели обрабатывают заодно с силовым каркасом-лонжероном на станке с ЧПУ. Для получения внешних обводов верхней формообразующей поверхности модели на предварительно изготовленный лонжерон наносят материал с низким модулем упругости методом напыления расплавленного вещества. Окончательное формирование обводов верхней аэродинамической поверхности модели осуществляют в режиме высокоскоростного низкомоментного фрезерования на станке с ЧПУ по созданной полной математической модели. Достигается высокая точность геометрического подобия внешней аэродинамической поверхности модели по отношению к натурному объекту, высокая точность воспроизведения массово-инерционных и жесткостных характеристик. 5 ил.

Изобретение относится к конструкции и способу изготовления лопастей аэродинамических моделей воздушных винтов, применяющихся для испытаний в аэродинамических трубах. Конструкция лопасти включает в себя регулярную часть, имеющую постоянный вес и геометрическую форму, и различные сменные концевые элементы. На конце регулярной части лопасти имеются переходные штыри, небольшая часть лонжерона, место стыковки, электрический разъем. Регулярная часть пера лопасти включает в себя: носовую многосекционную накладку, лонжерон с заданными жесткостными и весовыми характеристиками, верхнюю и нижнюю обшивку, заполнитель носовой части, заполнитель хвостовой секции, противофлаттерные грузы, концевую нервюру с микровыключателем, электрические провода, электрический разъем, грузы, провоцирующие флаттер. Сменные концевые элементы представляют собой конструкцию, состоящую из верхних и нижних обшивок, крепежных отверстий для стыковки с переходными штырями регулярной части лопасти, светодиодов, электрических проводов, электрического разъема, противофлаттерных грузов, легких заполнителей. Способ заключается в следующем: вначале изготавливается регулярная часть пера лопасти с обязательным точным измерением выступающих частей, таких как переходные штыри и концевая часть лонжерона, а затем результаты замеров используются при изготовлении посадочных мест в многочисленных сменных концевых элементах, отличающихся друг от друга различной геометрией, весом, центровкой, с последующей сборкой регулярной части с любым из сменных концевых элементов при помощи разборного винтового соединения. Технический результат заключается в возможности получения различных аэродинамических характеристик на базе одной лопасти, повышении надежности и сокращении времени изготовления испытаний лопастей. 2 н. и 8 з.п. ф-лы, 14 ил.

Изобретение относится к конструкции лопастей аэродинамических моделей воздушных винтов, предназначенных для испытаний в аэродинамических трубах. Лопасть аэродинамической модели воздушного винта содержит верхнюю и нижнюю обшивки, лонжерон, вкладыши, балансировочные и противофлаттерные грузы и носовые накладки. При этом концевая часть лопасти содержит одну или несколько нервюр, прикрепленных к задней стенке лонжерона, а корневая часть - прикрепленный к задней стенке лонжерона силовой элемент, включающий силовую лапку и силовую нервюру коробчатой формы с закрепленной между ними частью вкладыша хвостовой части лопасти. Достигается повышение жесткости корневой и концевой частей лопасти аэродинамической модели воздушного винта. 7 з.п. ф-лы, 6 ил.

Изобретение относится к области экспериментальных исследований динамических явлений аэроупругости летательных аппаратов в аэродинамических трубах. Динамически подобная аэродинамическая модель несущей поверхности содержит силовую упругую балку-лонжерон, дренированные блоки, установленные по размаху модели на силовую балку-лонжерон, нервюры, секции верхней и нижней обшивки, модельный электрогидравлический силовозбудитель для вынужденных колебаний модели в потоке, технические средства для измерений амплитудно-частотных характеристик модели. Балка-лонжерон состоит из пустотелого сердечника, на который наформованы монослои однонаправленного высокомодульного и высокопрочного полимерного композиционного материала. Каждый дренированный блок модели состоит из жесткого неразъемного каркаса с установленными на передней и задней кромке датчиками динамического давления и легкосъемных верхней и нижней панелей с установленными в них датчиками динамического давления. Обшивка модели представляет из себя трехслойные съемные секции переменной толщины. Изобретение направлено на повышение точности эксперимента. 7 з.п. ф-лы, 13 ил.

Изобретение относится к измерительной технике, а именно к аэродинамическим моделям летательных аппаратов для исследования распределения давления по поверхности тонкостенной модели, испытываемой в аэродинамических трубах при условии имитации струи кормового ракетного двигателя. Сущность изобретения заключается в том, что к дренажным отверстиям, просверленным на обтекаемой поверхности аэродинамической модели, предназначенной для измерения распределения давления по поверхности, в корпусе тонкостенной оболочки выполняются внутренние криволинейные каналы в пределах толщины оболочки. Измеряемое давление, воспринимаемое дренажными отверстиями, подается в каналы, которые внутри оболочки проложены к месту крепления боковой державки и здесь стыкуются с дренажными трубками, соединяющими измерительные устройства давления, например батарейный манометр, с выходными сечениями каналов. Технический результат заключается в повышении точности и достоверности измерений. 2 ил.

Изобретение относится к области аэродинамики и может быть использовано при изготовлении аэродинамической модели транспортного средства, например самолетов, ракет, автомобилей, железнодорожного транспорта и т.д

К сожалению, я ненашел ни одной статьи по аэродинамики "для моделиста". Ни на форумах, ни в дневниках, ни в блогах- ни где нет нужной "выжимки" по этой теме. А вопросов возникает море, особенно у новичков, да и те, кто считает себя "уже не новичком", зачастую не утруждают себя изучением теории. Но мы это исправим!)))

Сразу скажу, сильно углубляться в эту тему не буду, иначе это получится, как минимум научный труд, с кучкой непонятных формул! И тем более я не стану пугать вас такими терминами, как "число Рейнольдса"- кому будет интересно- можете почитать на досуге.

Итак, договорились- только самое нужное для нас- моделистов.)))

Силы, действующие на самолет в полете.

В полете самолет подвергается влиянию многих сил, обусловленных наличием воздуха, но все их можно представить в виде четырех главных сил: силы тяжести, подъемной силы, силы тяги винта и силы сопротивления воздуха (лобовое сопротивление). Сила тяжести остается всегда постоянной, если не считать уменьшения ее по мере расхода горючего. Подъемная сила противодействует весу самолета и может быть больше или меньше веса, в зависимости от количества энергии, затрачиваемой на движение вперед. Силе тяги винта противодействует сила сопротивления воздуха (иначе лобовое сопротивление).

При прямолинейном и горизонтальном полете эти силы взаимно уравновешиваются: сила тяги винта равна силе сопротивления воздуха, подъемная сила равна весу самолета. Ни при каком ином соотношении этих четырех основных сил прямолинейный и горизонтальный полет невозможен.

Любое изменение любой из этих сил повлияет на характер полета самолета. Если бы подъемная сила, создаваемая крыльями, увеличилась по сравнению с силой тяжести, результатом оказался бы подъем самолета вверх. Наоборот, уменьшение подъемной силы против силы тяжести вызвало бы снижение самолета, т. е. потерю высоты.

Если равновесие сил не будет соблюдаться, то самолет будет искривлять траекторию полета в сторону преобладающей силы.

Про крыло.

Размах крыла - расстояние между плоскостями, параллельными плоскости симметрии крыла, и касающимися его крайних точек. Р. к. это важная геометрическая характеристика летательного аппарата, оказывающяя влияние на его аэродинамические и лётно-технические характеристики, а также является одним из основных габаритных размеров летательного аппарата.

Удлинение крыла - отношение размаха крыла к его средней аэродинамической хорде. Для непрямоугольного крыла удлинение = (квадрат размаха)/площадь. Это можно понять, если за основу возьмём прямоугольное крыло, формула будет проще: удлинение = размах/хорду. Т.е. если крылоимеет размах 10 метров а хорда = 1 метр, то удлинение будет = 10.

Чем больше удлинение- тем меньше индуктивное сопротивление крыла, связанное с перетеканием воздуха с нижней поверхности крыла на верхнюю через законцовку с образованием концевых вихрей. В первом приближении можно считать, что характерный размер такого вихря равен хорде- и с ростом размаха вихрь становится всё меньше и меньше по сравнению с размахом крыла. Естественно, чем меньше индуктивное сопротивление- тем меньше и общее сопротивление системы, тем выше аэродинамическое качество. Естественно, у конструкторов возникает соблазн сделать удлинение как можно больше. И тут начинаются проблемы: наряду с применением высоких удлинений конструкторам приходится увеличивать прочность и жёсткость крыла, что влечет за собой непропорциональное увеличение массы крыла.

С точки зрения аэродинамики наиболее выгодным будет такое крыло, которое обладает способностью создавать возможно большую подъемную силу при возможно меньшем лобовом сопротивлении. Для оценки аэродинамического совершенства крыла вводится понятие аэродинамического качества крыла.

Аэродинамическим качеством крыла называется отношение подъемной силы к силе лобового сопротивления крыла.

Наилучшей в аэродинамическом отношении является эллипсовидная форма, но такое крыло сложно в производстве, поэтому редко применяется. Прямоугольное крыло менее выгодно с точки зрения аэродинамики, но значительно проще в изготовлении. Трапециевидное крыло по аэродинамическим характеристикам лучше прямоугольного, но несколько сложнее в изготовлении.

Стреловидные и треугольные в плане крылья в аэродинамическом отношении на дозвуковых скоростях уступают трапециевидным и прямоугольным, но на околозвуковых и сверхзвуковых имеют значительные преимущества. Поэтому такие крылья применяются на самолетах, летающих на околозвуковых и сверхзвуковых скоростях.

Крыло эллиптической формы в плане обладает самым высоким аэродинамическим качеством- минимально возможным сопротивлением при максимальной подъемной силе. К сожалению, крыло такой формы применяется не часто из-за сложности конструкции, низкой технологичности и плохих срывных характеристик. Однако сопротивление на больших углах атаки крыльев другой формы в плане всегда оценивается по отношению к эллиптическому крылу. Наилучший пример применения крыла такого вида- английский истребитель "Спитфайер".

Крыло прямоугольной формы в плане имеет самое высокое сопротивление на больших углах атаки. Однако такое крыло, как правило, имеет простую конструкцию, технологично и имеет очень неплохие срывные характеристики.

Крыло трапецеидальной формы в плане по величине воздушного сопротивления приближается к эллиптическому. Широко применялось в конструкциях серийных самолетов. Технологичность ниже, чем у прямоугольного крыла. Получение приемлемых срывных характеристик также требует некоторых конструкторских ухищрений. Однако крыло трапецеидальной формы и правильной конструкции обеспечивает минимальную массу крыла при прочих равных условиях. Истребители Bf-109 ранних серий имели трапецевидное крыло с прямыми законцовками:

Крыло комбинированной формы в плане. Как правило, форма такого крыла в плане образуется несколькими трапециями. Эффективное проектирование такого крыла предполагает проведение многочисленных продувок, выигрыш в характеристиках составляет несколько процентов по сравнению с трапецеидальным крылом.

Стреловидность крыла — угол отклонения крыла от нормали к оси симметрии самолёта, в проекции на базовую плоскость самолета. При этом положительным считается направление к хвосту.Существует стреловидность по передней кромке крыла, по задней кромке и по линии четверти хорд.

Крыло обратной стреловидности (КОС) — крыло с отрицательной стреловидностью.

Преимущества:

Улучшается управляемость на малых полётных скоростях.
-Повышает аэродинамическую эффективность во всех областях лётных режимов.
-Компоновка с крылом обратной стреловидности оптимизирует распределения давления на крыло и переднее горизонтальное оперение

Недостатки:
-КОС особо подвержено аэродинамической дивергенции (потере статической устойчивости) при достижении определённых значений скорости и углов атаки.
-Требует конструкционных материалов и технологий, обеспечивающих достаточную жёсткость конструкции.

Су-47 "Беркут" с обратной стреловидностью:

Чехословацкий планер LET L-13 с обратной стреловидностью крыла:

— отношение веса летательного аппарата к площади несущей поверхности. Выражается в кг/м² (для моделей- гр/дм²).Величина нагрузки на крыло определяет взлетно-посадочную скорость летательного аппарата, его маневренность, и срывные характеристики.

По-простому, чем меньше нагрузка, тем меньшая скорость требуется для полета, следовательно тем меньше требуется мощности двигателя.

Средней аэродинамической хордой крыла (САХ) называется хорда такого прямоугольного крыла, которое имеет одинаковые с данным крылом площадь, величину полной аэродинамической силы и положение центра давления (ЦД) при равных углах атаки. Или проще- Хорда — отрезок прямой, соединяющей две наиболее удаленные друг от друга точки профиля.

Величина и координаты САХ для каждого самолета определяются в процессе проектирования и указываются в техническом описании.

Если величина и положение САХ данного самолета неизвестны, то их можно определить.

Для крыла, прямоугольного в плане, САХ равна хорде крыла.

Для трапециевидного крыла САХ определяется путем геометрического построения. Для этого крыло самолета вычерчивается в плане (и в определенном масштабе). На продолжении корневой хорды откладывается отрезок, равный по величине концевой хорде, а на продолжении концевой хорды (вперед) откладывается отрезок, равный корневой хорде. Концы отрезков соединяют прямой линией. Затем проводят среднюю линию крыла, соединяя прямой середины корневой и концевой хорд. Через точку пересечения этих двух линий и пройдет средняя аэродинамическая хорда (САХ).


Форма крыла в поперечном сечении называется профилем крыла . Профиль крыла оказывает сильнейшее влияние на все аэродинамические характеристики крыла на всех режимах полёта. Соответственно, подбор профиля крыла - важная и ответственная задача. Впрочем, в наше время подбором профиля крыла из существующих занимаются только самодельщики.

Профиль крыла - это одна из основных составляющих, формирующих летательный аппарат и самолет в частности, так как крыло все же его неотъемлемая часть. Совокупность некоторого количества профилей составляют целое крыло, причем по всему размаху крыла они могут быть разные. А от того, какие они будут, зависит назначение самолета и то, как он будет летать. Типов профилей достаточно много, но форма их принципиально всегда каплевидна. Этакая сильно вытянутая горизонтальная капля. Однако капля эта обычно далека от совершенства, потому что кривизна верхней и нижней поверхностей у разных типов разная, как впрочем и толщина самого профиля. Классика - это когда низ близок к плоскости, а верх выпуклый по определенному закону. Это так называемый несимметричный профиль, но есть и симметричные, когда верх и низ имеют одинаковую кривизну.

Разработка аэродинамических профилей проводилась практически с начала истории авиации, проводится она и сейчас.Делается это в специализированных учреждениях. Ярчайшим представителем такого рода учреждений в России является ЦАГИ - Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского. А в США - такие функции выполняет Исследовательский центр в Лэнгли (подразделение NASA).

THE END?

Продолжение следует.....

Даже самая простая модель самолета — это самолет в миниатюре со всеми его свойствами. Многие известные авиаконструкторы начинали с увлечения авиамоделизмом. Чтобы построить хорошую летающую модель, нужно немало потрудиться, изучить теорию полета аппаратов тяжелее воздуха. Зато какое увлекательное зрелище — полет модели и какая это радость для ее создателя и зрителей! Все многообразие авиамоделей можно разделить на несколько классов.

Самые популярные среди начинающих авиамоделистов — бумажные авиамодели. В бумажном авиамоделировании можно выделить несколько направлений.

Элементарные контурные модели.

Это простейшие летающие модели самолетов, которые вырезаются из листа бумаги несколькими взмахами ножниц. Они наиболее просты и доступны для начинающих. Нелетающие модели-копии. Они в точности повторяют внешний вид известных марок самолетов. Проектирование моделей-копий требует специальных знаний, большого терпения и труда. Занимаются ими опытные моделисты, коллекционирующие модели авиационной техники.

Свободнолетающие модели.

Такие модели, сделанные из плотной бумаги или тонкого картона, могут запускаться с помощью резины с рук, как из рогатки, или со специального устройства — катапульты. Для достижения наибольшей дальности полета относительное поперечное сечение их фюзеляжа делается меньше, чем у самолетов-прототипов. Есть свободнолетающие бумажные модели, движущиеся за счет тяги, развиваемой воздушным винтом с приводом от резиномотора или миниатюрного электромоторчика.

Безмоторные модели, запускаемые в полет с помощью нити-леера, называются планерами.

Кордовые модели летают «на привязи». Они управляются рукой авиамоделиста с помощью стальных нитей или тросиков, которые называются кордами. Кордовая модель не может удалиться от спортсмена больше чем на длину корды. Этим кордовая модель отличается от свободнолетающей. На таких моделях устанавливают двигатели внутреннего сгорания или электродвигатели, питающиеся от внешнего источника тока, подаваемого по проводникам-кордам. Бумажные кордовые модели обычно оснащаются электродвигателями. Мы с вами сегодня поговорим о наиболее доступных, и интересных широкому кругу ребят свободнолетающих моделях — тех, что запускаются с рук или катапультой.

Основные понятия о аэродинмики.

Аэродинамические силы

Почему же летают аппараты тяжелее воздуха — самолеты и их модели? Вспомните, как ветер гонит листья и бумажки вдоль улицы, поднимает их вверх. Летящую модель можно сравнить с предметом, гонимым потоком воздуха. Только воздух здесь неподвижен, а модель мчится, рассекая его. При этом воздух не только тормозит полет, но при определенных условиях создает подъемную силу. Посмотрите на рисунок здесь показано сечение крыла самолета. Если крыло будет расположено так, чтобы между его нижней плоскостью и направлением движения самолета был некоторый угол а (называемый углом атаки), то, как показывает практика, скорость потока воздуха, обтекающего крыло сверху, будет больше, чем его скорость снизу крыла. А по законам физики в том месте потока, где скорость больше, давление меньше, и наоборот. Вот почему при достаточно быстром движении самолета давление воздуха под крылом будет больше, чем над крылом. Эта разность давлений поддерживает самолет в воздухе и называется подъемной силой (Рис. 1)

На рисунке 2 показаны силы, действующие на самолет или модель в полете. Суммарное действие воздуха на летательный аппарат представляют в виде аэродинамической силы К. Эта сила является результирующей силой, действующей на отдельные части модели: крыло, фюзеляж, оперение и т. д. Направлена она всегда под углом к направлению движения.

В аэродинамике действие этой силы принято заменять действием двух ее составляющих — подъемной силы и силы сопротивления.

Подъемная сила У всегда направлена перпендикулярно направлению движения, сила сопротивления X — против движения. Сила тяжести С всегда направлена вертикально вниз. Подъемная сила зависит от площади крыла, скорости полета, плотности воздуха, угла атаки аи аэродинамического совершенства профиля крыла. Сила сопротивления зависит от геометрических размеров поперечного сечения фюзеляжа, скорости полета, плотности воздуха и качества обработки поверхностей. При прочих равных условиях дальше летит та модель, у которой поверхность отделана более тщательно. Дальность полета определяется аэродинамическим качеством К, равным отношению подъемной силы к силе сопро-V тивления: К = —, то есть аэродинамическое качество показывает, сколько раз подъемная сила крыл) больше силы сопротивления модели В планирующем полете подъемы сила модели V обычно равна весу дели, а сила сопротивления X в раз меньше, поэтому дальность полета будет в 10—15 раз больше высоты И, с которой начался планируют полет, то есть К= Ют-15, Следовательно, чем легче модель, чем она тщательнее изготовлена, тем большей дальнее полета можно достигнуть.

Центровка модели

Чтобы полет был устойчивым, модель, должна иметь распределенную центровку; центр тяжес " ЦТ должен совпасть с центром давления крыла ЦД или быть несколько впереди его (центром давления крыла называется точка приложения аэродинамической силы).

У прямоугольного профилированного крыла ЦД находится примерно ни первой четверти ширины крыла. У простых бумажных моделей профиль крыла, как правило, очень тонкий либо вообще плоский. У таких крыльев центр давления находится в геометрическом центре площади.

У прямоугольных крыльев центр площади находится на пересечении его диагона(см. р и с. 3). На рисунке 3. показано, как определять центр площади любой другой формы крыла. Нужно вырезать крыло из плотного картона, установить его на ребро линейки и уравновесить. Точка пересечения ребра линейки с линией проведенной посередине крыла, и есть центр тяжести и центр давления крыла Центр тяжести модели находят тогд когда уже изготовлен груз. Для чего сн нужен? У простейших свободнолетающих моделей нет двигателя, и силу ги, движущую модель вперед, созда ее собственная масса. Для повышения инерционности модели в фюзеляж вклеивают груз, вырезанный из фанеры или нескольких слоев плотного картона. Наличие груза в носовой части фюзеляжа обеспечивает достаточну устойчивость модели в полете Зная центр тяжести модели и давления, подбирают правильное пол жение крыла на модели.

У моделей, летающих с большими скоростями (пускаемых с катапульты), ЦТ должен-быть впереди ЦД, а у свободно планирующих — совпадать.На прямолинейности полета особенно сильно сказывается «прогибы» фюзеляжа, то есть искривление в процессе склейки. За его формой нужно следить; и в процессе регулировки, и во время запусков, так и при ударах о препятствия он может деформироваться., Вообще свободнолетающие модели, имея большие скорости полета, часто деформируются при ударах о препятствия, поэтому они должны изготавливаться очень тщательно.

После полета не рекомендуется брать модель за крылья, стабилизатор и киль. Берите их только за носовую часть, то есть за груз. Начиная пробные полеты, старайтесь пускать модели на открытом месте, (там, где нет препятствий и людей). Только изучив «повадки» модели, определив ее траекторию и хорошо отрегулировав, можно запускать ее в залах и коридорах. Но при этом помните, что развившая большую скорость модель может поранить кого-нибудь из зрителей. Поэтому при запусках следите, чтобы предполагаемая траектория вашей модели не была направлена в сторону людей.

Как можно управлять полетом модели? В отличие от кордовых моделей свободнолетающими моделями невозможно управлять после старта. Но можно отрегулировать модель так, чтобы она летела по заданной траектории. Для управления в вертикальной плоскости (по тангажу) на самолетах служат рули высоты. На моделх для этого достаточно отогнуть заднею кромку стабилизатора вверх или вниз. При этом модель будет соответственно набирать высоту (и даже делать мертвую петлю) или пикировать. Для управления по крену достаточно отогнуть в противоположные стороны (вверх и вниз) кромки крыльев. На реальных самолетах на задней кромке крыла установлены специальные управляемы поверхности — элероны.

Для управления в горизонтальной плоскости на самолетах применяются рули направления. На модели для этой цели можно отогнуть в сторону заднюю кромку вертикального оперения. Когда (модель выполняется по схеме «бесхвостка», то есть без стабилизатора, отгиб, задней кромки крыла обеспечивает управление и по крену, и по таннажу, у настоящих самолетов такие рулевые поверхности, выполняющие роль, и элерона, и руля высоты, называются элеронами.

Работа с бумагой. Инструмент.

Для наших бумажных моделей используются, как правило, жесткие виды бумаги: чертежная бумага- ватман, тонкий картон. Для отделки и декоративных аппликаций применяется цветная бумага из наборов для детского творчества. Для резки бумаги рекомендуем изготовить специальные резцы и линейки. Особенно это важно, когда моделированием начинают заниматься младшие школьники. Они, как правило, еще плохо владеют своими руками, и даже обычное вырезание ножницами для них проблема. Их рука привыкла держать только карандаш и ручку. Поэтому рукоятку резца лучше сделать граненой (как карандаш) и слегка изогнутой (с м. рис. 4).

Изготовление таких резцов несложно. Их могут делать сами ребята в кружках технического творчества, в писарских лагерях. Лезвием для резца служит инструментальная сталь от полотна ножовки по металлу. Изготовить лезвие надо попросить старших по нашему чертежу (см. рис. 4) Рукоятки резцов делается из листового оргстекла. Нарежьте заготовки длиной 120 мм. С одного конца засверлите два отверстие сверлом 2 мм на глубину 20 мм, Потом приготовьте настольные тиски — разведите их губки примерно на 50 мм. Нагрейте засверленный конец рукоятки, пока оргстекло не размягчится, и одновременно нагрейте хвостовик. Возьмите лезвие плоскогубцами и вставьте в отверстие нагретой рукоятки. Разогретое, оно войдет туда свободно. После этого между двумя пластинами из оргстекла вставьте резец и зажмите весь этот пакет в губках тисков. Концы пластин должны сойтись между собой и зажать лезвие (см. рис. 4). Подержите так минут 5—10. Рукоятка остынет, и лезвие «намертво» впрессуется в нее. Теперь обработайте рукоятку — снимите наплывы размягченного оргстекла и сделайте грани. Еще немного разогрейте рукоятку, слегка согните и так остудите. Величина прогиба не должна превышать 5—6 мм. Заточите резец на оселке — инструмент готов. Для резки бумаги необходимы еще линейка из оргстекла толщиной 4 — 5 мм, длиной 30—35 см и шириной 30 — 35 мм. На нее обязательно нужно наклеить полоску из изоляционной ленты шириной 5 мм.

Почему линейка должна быть из оргстекла? И зачем изоляционная лента?

Такая линейка прозрачна, по ней легко скользит резец и не тупится об нее. Лента приклеивается для того, чтобы линейка не скользила по бумаге при работе. Ведь детали моделей должны быть изготовлены очень точно. Младшие школьники осваивают работу с этими двумя инструментами после двух-трех занятий. Несколько советов о приемах работы самодельными инструментами. Резец надо держать так, как вы держите карандаш или ручку. Линейку при резке кладите, чтобы ее конец был направлен к плечу режущей руки, то есть резать бумагу резцом нужно толь-ко «к себе». При резне линейку удерживают разведенными пальцами, прижав ее к бумаге и не отнимая руки до тех пор, пока не отрежут нужную деталь. Нажимать на резец сильно не рекомендуется. Можно сломать острый конец лезвия. Лучше провести точно несколько раз. Ни в коем случае не зажимайте резец в кулак, не давите на него с силой!

Если резец не режет, значит, он затупился и его нужно заточить. Необходимо приучить свою руку соразмерять силу нажима. Предлагаемый резец позволит вам вырезать детали любой, самой замысловатой и сложной формы. А вам придется вырезать из цветной бумаги буквы, номера самолетов и другие аппликации. Освоить такую резку можно только тренировкой руки. Чтобы сгибы деталей из бумаги и картона получались аккуратными, ровными, их надо предварительно обработать. Лучше всего их «подрезать». Что значит подрезать бумагу? Нужно по линиям сгиба провести резцом по линейке так, чтобы был надрезан только верхний слой бумаги, примерно на "/з ее толщины. На первый взгляд как будто простая операция. Но начинающим моделистам приходится упражняться по 1,5—2 часа ежедневно, чтобы научиться правильно подрезать бумагу по линиям сгиба. Потренируйтесь и вы. Попробуйте делать из бумаги «гармошку». При этом помните, что надрезанный слой при перегибе должен оставаться снаружи.

На наших развертках моделей все линии сгиба, обозначенные пунктиром (— —-----), надрезаются по лицевой стороне развертки. Линии, обозначенные штрих-пунктиром (—.—.—). надрезаются с обратной стороны. Резать бумагу нужно обязательно на фанерной подложке, а еще лучше на пластиковой (из сополимера). В крайнем случае, если вам не дается операция подрезания сгибов и зы прорезаете бумагу, можно продавливать эти линии тупой стороной столового ножа или специальной «косточкой». Но качество сгибов будет, конечно, хуже.

Несколько слов о клеях.

Толстые сорта бумаги и картон можно склеивать любым клеем. Наиболее надежно склеивают клеи ПВА (поливи-килацетатный), нитроцеллюлозный марки АГО, «Китификс». Клей «Момент» нужно использовать только для «прихватки». Его клеевой шов эластичен, и надежно приклеить детали модели им нельзя. Тонкие сорта бумаги рекомендуется склеязать клеями БФ-2 и нитроцеллю-яозными. Конторский клей КС (силикатный) и клей ПВА размягчают бумагу и при высыхании коробят детали моделей. Детали, выполненные из пенопласта марки ПС (полистирольный, белого цвета), рекомендуется приклеивать только клеем ПВА или БФ-2; детали из желтого пенопласта (марки ПХВ) — нитро-целлюлозными клеями и клеем ПВА. Теперь можно смело приступать к изготовлению моделей.

  1. Авиамодели чемпионов. Сборник. / сост. М.С. Лебединский. -М.: ДОСААФ, 1969. -64 с.
  2. Авиамоделизм. Сборник. -М.: Учпедгиз, 1960.
  3. Авиамодельный спорт. Правила проведения соревнований. М.: ЦСТКАМ ДОСААФ, 1986.
  4. Авиационный моделизм . (Учебное пособие). / Под. ред. Э.Б. Микиртумова. -М.: ДОСААФ, 1956.- 296 с.
  5. Анохин П.Л. Бумажные летающие модели . -М.: ДОСААФ, 1959. - 112 c.
  6. Анохин П.Л., Иванников Д.А. Авиамодельный кружок в школе. -М.: 1958, -30 с.
  7. Бабаев Н. Авиамоделисты. -М.: Редиздат ЦС Осоавиахима СССР, 1945. -111 с.
  8. Бабаев Н., Кудрявцев С. Летающие игрушки и модели. -М.: Оборонгиз, 1946. -206 с.
  9. Бабаев Н. Как организовать авиамодельный кружок. -М.: ДОСАРМ, 1950.
  10. Бабаев Н. Советский авиамоделизм. -М.: ДОСААФ, 1951.
  11. Бабаев Н., Лебединский М., Малик С., Мартынов Б. В воздухе - летающие модели. -М.: ДОСААФ, 1955.
  12. Бабаев Н., Гаевский О. и др. Авиационный моделизм. -М.: ДОСААФ, 1960.
  13. Бабьюк И. Коробчатые воздушные змеи. -М.: Госмашметиздат, 1934.
  14. Борзов Г. Обтяжка и окраска летающих моделей. -М.: ОСОАВИАХИМ, 1939. - 20 c.
  15. Варринг Р.Аэромоделирование . 2-ed. / На англ. яз. -NY. ARC BOOKS, INC. 1968. -168 p.
  16. Васильев А.Я., Куманин В.М. Летающая модель и авиация. -М.: ДОСААФ, 1968. - 64 с.
  17. Васильченко В. и М. Кордовые летающие модели (БЮК). -М.: ДОСААФ, 1958. - 158 с.
  18. Вилле Р. Постройка летающих моделей-копий / Пер. с нем. -М.: ДОСААФ, 1986. - 223 с., ил.
  19. Винтин Г. Мастерская авиамоделиста. -М.: ДОСААФ, 1954.
  20. Гаевский О.К. Скоростная кордовая летающая модель. -М.: ДОСААФ, 1951.
  21. Гаевский О.К. Рекордная скоростная модель самолета. -М.: ДОСААФ, 1951.
  22. Гаевский О.К. Технология изготовления авиационных моделей. -М.: Оборонгиз, 1953. - 340 с.
  23. Гаевский О.К. Конструкция бачков для горючего летающих моделей. -М.: ДОСААФ, 1954.
  24. Гаевский О.К. Летающие модели планеров. -М.: ДОСААФ, 1955.
  25. Гаевский О.К. Авиамоделирование. -М.: ДОСААФ, 1964.
  26. Гаевский О.К. Авиамоделирование. -М.: ДОСААФ, 1990. - 408 с.
  27. Голубев Ю., Камышев Н. Юному Авиамоделисту . (Пособие для учащихся) -М.: Просвещение, 1979.- 128 с.
  28. Готтесман В.Л. Летающие модели самолетов. -М.: Гостехиздат, 1950.
  29. Ермаков А.М. Авиамодельный спорт. -М.: 1969.
  30. Ермаков А.М. Авиамодельные соревнования. -М.: ДОСААФ, 1970.
  31. Ермаков А.М. Простейшие авиамодели . Кн. для учащихся 5-8 кл. -М.: Просвещение, 1984. - 160 с.
  32. Ермаков А.М. Простейшие авиамодели. Кн. для учащихся 5-8 кл. -М.: Просвещение, 1989. - 160 с.
  33. Жидков С. Секреты высоких скоростей кордорых моделей самолетов. -М.: ДОСААФ, 1972.
  34. Капковский Я. Летающие крылья. -М.: ДОСААФ, 1988. - 130 с.
  35. Ковалев А. Расчет авиамодели с бензиновым мотором. -М.: Осоавиахим, 1939.
  36. Костенко И. Микиртумов Э., Рекордные летающие модели. -М.: Оборонгиз, 1950.
  37. Костенко И. Микиртумов Э. Летающие модели . Изд. 2-е. -М.: Детгиз, 1952. - 96с.
  38. Костенко И. Микиртумов Э., Летающие модели. -М.: Молодая гвардия, 1953-1954.
  39. Костенко И. Проектирование и расчет модели планера (БЮК). -М.: ДОСААФ, 1958. - 202 с.
  40. Костенко И. Демин С. Советские самолеты . Альбом для авиамоделистов. -М.: ДОСААФ, 1973. - 120 с.
  41. Кудрявцев С. Рекордные летающие модели самолетов с бензиновыми моторами. -М.: Оборонгиз, 1940.
  42. Кудрявцев С. Простейшие летающие модели. -М.: Детиздат, 1941. -68 с.
  43. Куманин В.В. Фюзеляжные модели самолетов с резиновыми двигателями (БЮК). М.: ДОСААФ, 1958.-72c.
  44. Куманин В.В. Регулировка и запуск летающих моделей . -М.: ДОСААФ, 1959. - 104 с.
  45. Куманин В.В. Модели самолетов с резиновыми двигателями. -М.: ДОСААФ, 1962.
  46. Купфер М. Модель самолета "летающее крыло" -М.: ДОСААФ, 1952. - 48 с.
  47. Лагутин О.В. Самолет на столе .-М.: ДОСААФ, 1988. - 119 с.
  48. Лагутин О.В. Самолет на столе.-К.: АероХобби, 1997, - 192 с.
  49. Лети, модель! Кн.1. / Сост. М. С. Лебединский. -М.: ДОСААФ, 1969.
  50. Лети, модель! Кн.2. / Сост. М. С. Лебединский. -М.: ДОСААФ, 1970. - 160 с.
  51. Ляшенко Н.В., Исаенко В.И. Авиамоделирование (физ. основы). -К.: "Радянска Школа", 1979. -18 плак.
  52. Ляшенко Н.В. Авиамоделирование (авиамодели). -К.: "Радянска Школа", 1982. - 20 плак.
  53. Мараховский С.Д., Москалев В.Ф.Простейшие летающие модели: Сделай сам. -М.: Машиностроение, 1989. - с.
  54. Мерзликин В.Е. Радиоуправляемые модели планеров. -М.: ДОСААФ, 1982. - 160 с.
  55. Микиртумов Э.Д. Двигатели летающих самолетов. -М.: ОНТИ, 1935.
  56. Микиртумов Э.Д. и Павлов П.С. Комнатные летающие модели. -М.: Оборонгиз, 1951.
  57. Миклашевский Г.В. Спутник юного авиастроителя . -М-Л: ОНТИ, 1936. -160 с.
  58. Миклашевский Г.В. Летающие модели. -М.: Оборонгиз, 1956.
  59. Мурычев Л. Летающие модели вертолетов. -М.: ДОСААФ, 1955.
  60. Наталенко В. Кордовые летающие модели (БЮК). -М.: ДОСААФ, 1962. - 84 с.
  61. Остенко И. Простейшие летающие модели (В помощь юным техникам). -М.: Детгиз, 1948.-14 с.
  62. Павлов А.П. Твоя первая модель . -М.: ДОСААФ, 1979.-143 с.
  63. Панков М.И. Работа авиамодельного кружка. -М.: Редиздат ЦС Осоавиахима СССР, 1947. -125 с.
  64. Пантюхин С.П.Детская змейковая станция. -М.: Оборонгиз, 1941.
  65. Пантюхин С.П. Воздушные змеи. -М.: ДОСААФ, 1984. - 88с.
  66. Платонов В. Инженерам малой авиации (на укр. яз. ). -К.: Веселка, 1965. - 75 с.
  67. Проектируй, строй авиационные модели . Сборник. / сост. М.С. Лебединский -М.: ДОСААФ, 1963. - 148 с.
  68. Рожков В.С. Авиамодельный кружок: Пособие для рук. кружков. -М.: Просвещение, 1978.- с.
  69. Рожков В.С. Авиамодельный кружок: Пособие для рук. кружков. -М.: Просвещение, 1986.- 144 с.
  70. Рожков В.С. Строим летающие модели . -М.: Патриот, 1990. - 159 с.
  71. Сироткин Ю. В воздухе - пилотажная модель. -М.: ДОСААФ, 1972.
  72. Скобельцын В. Как сделать летающую модель самолета. -М.: Детгиз, 1949, 1951.
  73. Скобельцын В., Пашкевич Н. Летающие модели / в кн. В помощь юному технику.-Л.: Детгиз, 1952.-148с. 6 вкл.
  74. Скобельцын В., Пашкевич Н. Авиамодельный кружок. -М.: ДОСААФ, 1956.
  75. Спунда Б. Летающие модели вертолетов . -М.: Мир, 1988. - 135 с.
  76. Смирнов Э.П. Винты резиномоторных моделей. -М.: ДОСААФ, 1961.
  77. Смирнов Э.П. Как сконструировать и построить летающую модель. -М.: ДОСААФ, 1973.
  78. Стахурский А. Авиамоделисты в пионерском лагере . - Прил. к "ЮТ" № 18 (180), 1964.
  79. Субботин В.М. Таймерная модель самолета (БЮК). -М.: ДОСААФ, 1958. - 74 с.
  80. Тарадеев Б.В. Летающие модели-копии. -М.: ДОСААФ, 1983. - 160 с.
  81. Тарадеев Б.В. Модели-копии самолетов. -М.: Патриот, 1991. - 239 с.
  82. Товнер Х. Летающие модели-копии / На англ. яз. -Harborough publishing company LTD, 1941.-104 c.
  83. Трунченков Н.С. Регулировка и запуск летающих моделей. -М.: ДОСАРМ, 1950.
  84. Трунченков Н.С. Как строить летающие модели. -М.: Оборонгиз, 1951.
  85. Трунченков Н.С. Моторная парящая модель самолета. -М.: ДОСААФ, 1952.
  86. Фаусек. Летающие модели самолетов и как их строить. -М.: АВИАХИМ, 1925.
  87. Фомин В.И., Назаров А.Ш. Авиамодельный спорт (альбом чертежей). -М.: ДОСААФ, 1985. -80 с.
  88. Хухра Ю. Летающие модели автожиров. -М.: ДОСААФ, 1953.
  89. Хухра Ю. Летающие модели гидосамолетов. (БЮК). -М.: ДОСААФ, 1954. - 68 с.
  90. Хухра Ю. Летающие модели-копии самолетов. -М.: ДОСААФ, 1959.
  91. Хухра Ю., Потапов В. Пилотажные радиоуправляемые модели самолетов -М.: ДОСААФ, 1965. - 120 с.
  92. Шахат А.М. Резиномоторная модель . М.: ДОСААФ, 1977. - 61 с.
  93. Шекунов Е.Д. Летающая модель самолета-моноплана. -М.: АВИАХИМ, 1925.
  94. Шекунов Е.Д. Как построить летающую модель / Руководство для кружков. -М.: АВИАХИМ, 1926. - 144 с.
  95. Юные авиаконструкторы / в кн. Юные конструкторы. Померанцев Л. -Г.: Горьковское кн. изд., 1956.-152с.

А ЭРОДИНАМИКА

  1. Анохин П.Л. Настольная аэродинамическая труба. / "Техника-молодежи" 3, 1952
  2. Белоруссов Л. Аэродинамические исследования профилей летающих моделей. / "Крылья родины" 1, 1956
  3. Болонкин А. Теория полета летающих моделей. -M.: ДОСААФ, 1962. - 329 c.
  4. Васильев А. Аэродинамика крыла летающей модели. / "Крылья родины" 2, 1955
  5. Готтесман В.Л. Профили для летающих моделей. -М.: ДОСААФ, 1958. - 96 с.
  6. Готтесман В.Л. Профили для летающих моделей. -М.: ДОСААФ, 1965.
  7. Закс. Н.А. Основы эксперементальной аэродинамики. -М.: Оборонгиз, 1953.
  8. Зверик А. Авиамодельный винт из пластмассы / «Крылья Родины», 5, 1960.
  9. Зыкин Н.И. Аэродинамическая труба и опыты с нею. / "Физика в школе" 1, 1953
  10. Казневский В.П. Аэродинамика в природе и технике. -М.: Учпедгиз, 1955.
  11. Ковалев А.П.

"На золотом крыльце сидели:

царь, царевич, король, королевич,

сапожник, портной.

Кто ты будешь такой?…"

(Детская считалка)

Те, у кого "Ногу свело", поют, что аквалангисты - это хорошо, что они любят нырять и купаться. Но любят ли они конструировать акваланги? А те, кто конструируют, любят ли они со своими аквалангами нырять - большой вопрос.

А что же моделисты?

Бытует мнение, что хороший авиамоделист - и конструктор, мастер на все руки, и летчик, и все в одном лице. При развитом социализме так оно и было. Но не сейчас. Сегодня можно с удовольствием заниматься только тем, чем больше нравится - много летать и чуть-чуть строить, или наоборот, много строить и чуть-чуть летать.

Тех, кто строит чуть-чуть, становится с каждым годом все больше и больше. В этом можно убедиться, посмотрев ассортимент ближайшего модельного магазина - Kit-ы пропадают, ARF прибывают. Спрос рождает предложение. Я не хочу думать о том, что модели превращаются в дорогие игрушки, а авиамоделизм - в специфический аттракцион. (Мне рассказывали случай, как некий "новый русский" забетонировал у себя на даче специальную полосу и в первый же полетный день вдолбил в нее пару тысяч долларов по самый хвост, на этом его увлечение авиамоделизмом закончилось.) Но тенденция превращения авиамоделизма (как массового явления) из ТЕХНИЧЕСКОГО ТВОРЧЕСТВА в спортивное развлечение, по-моему, налицо. Хорошо это или плохо - не знаю, посмотрим. Дальше я обращаюсь к тем, кто воспринимает авиамоделизм именно как творчество, и неважно, кто он больше: летчик или конструктор самолетов.

Не только мои многолетние наблюдения убеждают в том, что, как правило, те, кто строят хорошие самолеты - плохо летают, а те, кто хорошо летают, зачастую способны только на сборку ARF. По крайней мере, моделист, который бы сам сконструировал и изготовил классный самолет, а потом показывал бы на нем чудеса пилотажа - сегодня редкость. И если конструктор может стать очень приличным летчиком, то прирожденный летчик конструктором не станет. Одни строят, другие летают. Каждому свое. Разные это профессии. Бывают конструктора, бывают летчики, но конструктор и летчик в одном лице не бывает.

В поле одних от других отличить легко. Летчики стоят, задрав голову в небо, конструктора - "обнюхивают" самолеты.

Понимание того, кто же ты такой - конструктор или летчик, приходит не сразу, но приходит. Разберитесь в себе и действуйте соответственно. Если вы летчик - купите самолет, летайте и можете не слишком глубоко погружаться в дебри аэродинамики, если конструктор - специфические тонкости той или иной радиоаппаратуры будут вас интересовать постольку-поскольку и т.п.

Деньги есть? Тогда проходи…

"Зав. Складом: Какова же ваша цена?

Балбес: Триста тридцать!

Бывалый: Каждому!!"

(Сценарий)

Никакое хобби не обходится без материальных, т.е. денежных, вложений. Серьезное занятие любимым хобби требует серьезного вложения денег. У кого мало наличных, тот расплачивается своим временем, которое, в конечном счете, имеет тот же денежный эквивалент. Моделист, который говорит, что он сделал классный самолет за смешные деньги или врет, или совсем не ценит свой труд и свое время. У меня был такой случай. Один моделист, хвастался своим действительно хорошим самолетом. Долго рассказывал, какой хлам он взял, и какой замечательный получился результат. Я заметил, что, наверно, ему это дорого встало. Он сказал, что сущие пустяки, рублей 300...350. Однако на просьбу сделать из такого же хлама такую же конфетку за 700 рублей он рассмеялся мне в лицо и покрутил пальцем у виска. Он что, врал про 350 рублей? Да нет, просто к этим 350 рублям надо прибавить стоимость его труда и времени долларов на 300.

Как правило, опытный моделист будет заниматься восстановлением чужой модели или ради прикола, или если это крутое ретро, эксклюзив, повторить который нельзя, или за хорошие деньги, но никак не для собственного употребления. Точно так же, как часовщик не станет для себя восстанавливать часы из хлама. Он купит хорошие часы, тщательно отрегулирует их, и будет ухаживать за ними так, что они будут ходить долго и точно, как ни у кого другого.

Не гонитесь за кажущейся дешевизной, восстанавливая для себя чужие битые самолеты. Дороже обойдется. Вообще, RC авиамоделизм - хобби не из дешевых. Но если безденежный моделист-конструктор все равно будет строить самолеты из подножных материалов, то безденежный моделист-летчик очень скоро превратится в нудного, очкастого теоретика.

Потный вал вдохновения

"Пилите, Шура, пилите…"

("Золотой теленок")

Решено: модель своя, с нуля, по собственному проекту, заточенная на высокие летные характеристики и маневренность, т.е. попросту пилотажка. Подход к проекту на полном серьезе, по науке. Цель - создать оригинальный самолет с летными характеристиками лучшими, чем у известных моделей (или, по крайней мере, не хуже, чем у них).

Раскрыты нужные книжки на нужных страницах, запущены хитрые расчетные программы, одним словом, работа закипела. Схема, движок, компоновка. Предварительные главные размерения. Расчет весов. Нагрузка на крыло, профиль, поляра крыла и всего самолета (кто не знает поляра - зависимость между коэффициентами лобового сопротивления и подъемной силы крыла). Опять главные размерения. Продольная устойчивость, крен, рысканье, рангаж. Опять главные размерения. Скорость, рули, элероны. Опять главные размерения. Конструкция, прочность, технология. Опять расчет весов, нагрузка на крыло, профиль, поляра, устойчивость... и по кругу. С каждым циклом очертания самолета все более вырисовываются и... сначала смутно, а потом все более отчетливо что-то напоминают. Наконец ты понимаешь, что разработал Экстру! Ну, хвостик чуть другой, ну кабинка... , но все равно Extra (туды ее в качель)! За что боролись?! Изменив очертания и форму, чтобы непохоже было, пересчитываешь и понимаешь, что летать будет хуже, чем та же Экстра. С аэродинамикой не поспоришь. Все. Крушение надежд удивить мир. А затраченные усилия? А время, которое - деньги?

Зачем я это рассказываю? Чтобы руки отбить? Да нет, любой моделист-конструктор (не важно, самолетчик или яхтсмен), хоть один раз в жизни изобретал велосипед (или пропеллер). Это нормально. Просто я хочу дать пару советов молодым - горячим конструкторам.

Ставьте себе реальные планы. Как ни печально, но надо смириться с тем, что почти все уже придумано до нас. Конечно, это "почти" греет душу, дает, так сказать, надежду, но... Оптимальные аэродинамические схемы и компоновки, например, для тех же пилотажных моделей под ДВС придуманы давно, проверены и перепроверены не одним поколением конструкторов. Для революции нет революционной ситуации. Воздушная среда - она и есть воздушная среда, силовая установка на основе ДВС настолько вылизана, что плюнуть некуда, разве что с глушителем поиграть. Поэтому прежде чем хвататься за разработку самолета с чистого листа, оглядитесь вокруг, наверняка отыщется прототип (известный и проверенный), отвечающий вашему замыслу.

Какой марки первый самолет?

В советских авиамодельных кружках у начинающих моделистов первая модель, в обязательном порядке, была какая-нибудь схематичка. Придя во Дворец Пионеров и школьников на Ленинских горах (звучит-то как: Дворец, Пионеры, Ленин...) в авиамодельный кружок в секцию кордовых моделей, я уже имел за плечами кое-какой опыт в постройке успешно летающих моделей. Но мне все равно дали резиномоторную схематичную модель самолета. Я был страшно разочарован - такую фигню можно было и дома сделать. Было это в середине 60-х. Теперь я понимаю, что по-другому и быть не могло. Руководитель кружка не мог рисковать дефицитными материалами, не будучи уверенным, что у начинающего моделиста руки растут из правильного места. Бедные кружководы были зажаты государственным финансированием и отчетностью. В кружках ставка делалась на 2... 3-х проверенных ребят, которые "съедали" львиную долю бюджета кружка. Остальным вынуждено доставалась роль статистов. Чтобы прорваться в круг избранных, надо было проявить незаурядные способности. Это была мечта каждого кружковца. Жесточайшая конкуренция, вызванная глобальным дефицитом всего, заставляла добиваться приличных результатов при минимуме ресурсов, и случайных людей в моделизме практически не было. У неорганизованных моделистов выбор прототипа определялся не столько опытом, сколько доступом к дефицитным материалам. Деньги, как таковые, почти ничего не решали. Есть материалы - строился хороший сложный самолет, нет - делался самолет попроще.

Времена изменились. Дефицита практически нет (по крайней мере, в Москве). Строй что хочешь. Одно осталось неизменным, как раньше, так и сейчас: выбор прототипа для постройки модели производится на пределе материальных возможностей - раньше в смысле дефицитных материалов, сегодня в смысле денег. Мнение, что начинать надо непременно с "Картоныча", я не разделяю. Ерунда все это. Мне известен моделист, который свой первый полет совершил на дорогущем пилотажном биплане, весьма непростом в управлении. И ничего, не разбил, научился летать. Все дело в ответственности, в серьезной предварительной подготовке на симуляторе. Вообще самолет, на котором летаешь, должен нравиться, его должно быть жалко разбить. Так что подсчитайте ваши денежки и закладывайтесь на все что есть, по полной программе. Как при выборе автомобиля - никто не купит подержанные Жигули, если есть деньги на Мерседес, даже при полном отсутствии навыков езды.

Аэродинамика для чайников

"А все почему?.. И по какой причине?..

И какой из этого следует вывод?"

(Монолог ослика Иа.)

И все же, с чего начать? Как грамотно выбрать прототип?

Критерии выбора прототипа лежат на прочном фундаменте аэродинамической теории моделей самолета. В 99 случаях из 100 начинающий моделист сначала строит самолет и даже не один, а уж потом начинает изучать теорию - жизнь заставляет. Призывать делать наоборот бесполезно. Почувствовав в себе тягу к небу, будущий моделиста чувствует и настоящий зуд нетерпения - скорее в небо, хоть на чем! Тут не до книжек. И только получив кайф от первых полетов (кто не помнит восторг и ликование в душе от первого поднятого в небо самолета?), отдышавшись и задумавшись о следующей модели, моделист приходит к выводу, что неплохо было бы что-нибудь поизучать.

Модель должна лететь ровно при брошенных ручках управления продолжительное время, не срываясь в штопор и не заваливаясь на крыло не только в полный штиль, но и при возмущениях воздуха. Т.е. она должна обладать продольной, поперечной и путевой устойчивостью.

Продольная устойчивость

На продольно неустойчивом самолете летать невозможно, это факт. Но и слишком большая продольная устойчивость не всегда благо. Например, излишняя устойчивость делает полет самолета вялым, а энергичные фигуры получаются "сонными". Наиболее зрелищные фигуры - плоский штопор snap roll и многие другие 3D фигуры вообще невозможно выполнить на самолете с излишней продольной устойчивостью. Такие субъективные оценки, как "шустрая" или "тупая" модель тоже в основном связаны с продольной устойчивостью. Это важнейшая характеристика самолета. Четкое понимание ее природы, а так же владение методами, позволяющими управлять параметрами продольной устойчивости - залог не только успешного строительства новых моделей, но и гарантия грамотной, безаварийной эксплуатации готовых самолетов.

Продольная устойчивость определяется взаимным положением центра тяжести (ЦТ) модели и ее фокуса, т.е. точки приложения равнодействующей аэродинамических сил, действующих на ВСЕ части самолета. Для обычной, традиционной схемы модели, ее фокус определяется главным образом фокусом крыла (т.е. точкой приложения равнодействующей аэродинамических сил действующих на крыло, или, по-другому - центром давления). А положение фокуса крыла в свою очередь напрямую зависит от его профиля и углов атаки. Таким образом, с одной стороны - центровка самолета, с другой - профиль его крыла и эффективность хвостового оперения - вот, по большому счету, альфа и омега продольной устойчивости модели.

Теперь подробнее.

Очевидно, что если ЦТ находится впереди фокуса - модель продольно устойчива (в полете создается устойчивое равновесие). Правда, слишком передняя центровка приводит к снижению аэродинамического качества модели, да еще при этом может не хватить эффективности стабилизатора для компенсации пикирующего момента - самолет просто не взлетит. А если взлетит, то при посадке на малых скоростях обязательно "клюнет" носом если не с летальным исходом, то с большими неприятностями для стоек шасси, капота и пропеллера.

Если ЦТ находится позади фокуса, то в принципе модель - неустойчива. Однако в определенном диапазоне центровок - от совпадающей с фокусом до некоторой задней, самолет продолжает быть продольно устойчивым за счет демпфирующего момента стабилизатора.

Еще более задняя центровка представляет особый интерес. Такая модель крайне неустойчива в полете и пилот управлять ею без специальных технических средств не может. Однако применение систем стабилизации на основе гироскопов позволяет не только летать на таких самолетах, но и получать при этом заметные преимущества в выполнении фигур пилотажа. Характерно, что на турнире чемпионов (ТОС) в Лас-Вегасе большинство участников использовали электронную стабилизацию для изменения коэффициента устойчивости в полете на разных фигурах. Но это тема отдельного разговора.

Чувствуете, куда я клоню? Все по законам жанра: очень задняя центровка - никуда не годится, очень передняя - тоже не сахар, значит...

Действительно, оптимальная величина продольной устойчивости достигается, если ЦТ лежит вблизи фокуса модели с небольшим запасом (ЦТ может менять свое положение в полете, например при расходе топлива, при уборке - выпуске шасси и т.д.). Остается выяснить, где находится фокус модели, который, как мы договаривались, для обычных схем в большой степени зависит от фокуса крыла.

Фокус крыла определяется центром давления его профиля, который в общем случае не стоит на месте. Его положение в той или иной степени зависит от относительной кривизны и угла атаки. Проще всего с профилям, близкими к симметричным. У них центр давления, как правило, находится на 25% САХ (средней аэродинамической хорды) и практически не зависит от угла атаки. К примеру, у профиля NACA 2415 (относительная кривизна 2% на 40% длины хорды, относительная толщина 15%) в диапазоне углов атаки от 4 до 18 град. центр давления практически не изменяет своего положения и отстоит от носка профиля на расстояние, соответствующее 25% САХ. У профиля CLARK YH, отличающегося несколько большей кривизной, в том же диапазоне углов атаки перемещение центра давления еще вполне приемлемо. Для профиля же с 6% -ной относительной кривизной (кроме того, еще и довольно тонкого) это перемещение весьма заметно.

Существуют профили, у которых центр давления вообще не перемещается. Однако на моделях они практически не используются (кроме аппаратов типа "летающее крыло"), т.к. их аэродинамические качества значительно ниже, чем у обычных профилей.

Кроме того надо заметить, что использование механизации крыла, например, посадочных щитков, создающих эффект увеличения кривизны профиля, даже у профиля NACA 2415 приводит к заметному изменению положения центра давления.

Изменение положения центра давления профиля явление весьма неприятное. Механизм тут простой. При оптимальном взаимном расположении ЦТ и фокуса модели в строго горизонтальном полете (ЦТ вблизи фокуса с небольшим запасом), модель нормально устойчива. При изменении угла атаки центр давления профиля начинает перемещаться (не в лучшую сторону), взаимное расположение ЦТ и фокуса - изменяется, и мы сразу вторгаемся в область центровок позади фокуса, т.е. в область неустойчивости. Как было упомянуто, размер области задних центровок, где модель продолжает быть продольно устойчивой, напрямую зависит от эффективности стабилизатора, которая пропорциональна произведению площади стабилизатора на квадрат его плеча, что прослеживается в конструкциях "длиннохвостых" пилотажек.

В принципе, надежная продольная устойчивость модели обеспечена, если площадь ее горизонтального оперения составляет 25% площади крыла, а расстояние между этим оперением и крылом соответствует примерно 2,5 средней хорды крыла. Приведенные соотношения учитывают практически все неблагоприятные факторы, влияющие на устойчивость.

Известна номограмма, с помощью которой по геометрическим характеристикам прототипа можно определить параметры его продольной устойчивости, характеризуемые коэффициентом продольной устойчивости.

К - коэффициент продольной устойчивости;
А = S оп / S кр - отношение площади горизонтального оперения к площади крыла;
L = L пл / h - отношение расстояния от крыла до горизонтального оперения к средней хорде крыла.

В целом можно сказать:

  • Продольная устойчивость недостаточна при ее коэффициенте ниже 45;
  • При коэффициенте продольной устойчивости от 45 до 55 должны быть предприняты все возможные мероприятия по ее улучшению;
  • Продольная устойчивость достаточна при коэффициенте от 55 до 65;
  • При коэффициенте выше 65 можно не применять профили с неизменным положением центра давления в широком диапазоне углов атаки;
  • При коэффициенте выше 75 можно использовать профили с относительной кривизной до 5%;
  • При более высоких значениях допустимо практически без опаски снизить продольную устойчивость.

Улучшить стабилизирующий эффект горизонтального оперения можно, использовав для него симметричный профиль относительной толщины около 12%. У радиоуправляемых моделей с действующим рулем высоты определенное повышение подъемной силы, а значит и большее стабилизирующее действие, может быть достигнуто уменьшением зазора между рулем и оперением. При меньшем зазоре распределение давления по определению лучше, особенно при отклонении руля. Действие горизонтального оперения зависит также от удлинения крыла и его положения относительно крыла. Однако эти параметры имеют подчиненное значение, с их помощью нельзя радикально улучшить устойчивость модели. Большое удлинение крыла оказывает такое же воздействие, как отнесение горизонтального оперения в зону, удаленную от спутной струи крыла, как, например, при использовании Т-образного оперения.

Напомню, что до сих пор мы говорили об обычных схемах самолета - прямое (или трапеция) крыло, хвостик, фюзеляж. Я плохо себе представляю моделиста, который для своего первого самолета выбрал бы схему "утка". Тем не менее для полноты картины, наверное, стоит упомянуть и другие схемы.

Продольную устойчивость модели со стреловидным крылом можно улучшить круткой крыла. Здесь возможна как чисто геометрическая (максимум до 4 град.), так и аэродинамическая крутка. В последнем случае речь идет о переходе несущего корневого профиля к симметричному профилю на законцовке крыла. Получила распространение комбинация обеих круток, благодаря которой кроме улучшения продольной устойчивости эффективно снижается индуктивное сопротивление. Крутка крыла широко применялась на планерах-бесхвостках схемы "чайка".

Продольная устойчивость на самолетах схемы "утка" тоже определяется взаимным положением ЦТ и фокуса крыла, однако демпфирования от переднего стабилизатора нет, а центровки применяются очень передние.

Продольная устойчивость бесхвосток достигается применением специальных профилей с т.н. S-образной средней линией. У таких профилей центр давления так же перемещается при изменении угла атаки, но в противоположную сторону.

Особняком стоят бипланы и другие многокрылые аппараты. Проблемы их устойчивости выходят за рамки настоящей статьи. Нельзя объять необъятное, как говаривал Козьма Прутков.

Поперечная и путевая устойчивость

Известно, что поперечная устойчивость модели взаимосвязана с путевой. Поэтому рассматривать их нужно в комплексе. Сразу оговоримся, большая поперечная устойчивость нужна учебным и свободнолетающим самолетам. Для пилотажек и продвинутых тренировочных моделей поперечная устойчивость должна быть нулевая. Путевая (курсовая) устойчивость тоже не должна быть слишком высокой. Чрезмерное ее значение препятствует вхождению в штопор, который вырождается в спираль, кроме того, при большом значении путевой устойчивости и ненулевом V крыла, поперечная устойчивость самолета ухудшается.

Для повышения поперечной устойчивости используют несколько конструктивных приемов. Это может быть получение устойчивости за счет поперечного V крыла. Тут лучше всего дело обстоит с высокопланами, т.к. у них центр тяжести лежит ниже фокуса, т.е. создается устойчивое равновесие. Кроме того, на высокопланах часто применяется фюзеляж с большой боковой поверхностью. У большинства низкопланов вследствие неустойчивости положения центра тяжести необходимо увеличивать угол поперечного V крыла модели.

Применение стреловидных крыльев тоже повышает поперечную устойчивость. Поперечная устойчивость дельт-бесхвосток обусловлена именно стреловидностью крыла.

Что касается путевой устойчивости, то в общем случае считается, что модель будет иметь достаточную путевую устойчивость, если площадь киля составляет 10% площади крыла, а расстояние между ними соответствует 2,5 средним хордам крыла. Если киль расположен на том же расстоянии, что и горизонтальное оперение, как это в большинстве случаев и бывает, то площадь киля принимают равной 1/3 площади этого оперения. При таком соотношении площадей путевая устойчивость вполне достаточна.

Еще кое-что о профилях

Несмотря на громадный выбор, в авиамоделизме реально используется чуть больше двух десятков профилей. Вот некоторые из них. Профили от NACA 0009 до NACA 0018 являются симметричными, а поскольку их относительная толщина составляет от 6 до 12%, они применяются, прежде всего, для поверхностей хвостового оперения. "Классические" для пилотажных моделей профили имеют относительную толщину от 16 до 18%. Профили NACA 23009 - NACA 23018 являются полусимметричными, они широко используются не только на моделях, но и на настоящих самолетах. Центр давления у них изменяет свое положение незначительно. По-настоящему универсальным можно назвать полусимметричный профиль CLARK Y. Его можно применять как на радиоуправляемых, так и на свободнолетающих моделях. Симметричные же профили могут считаться профилями с неизменным положением центра давления, однако, к сожалению, они развивают небольшую подъемную силу и при больших углах атаки склонны к неожиданным срывам потока без заметного перехода.

У профиля EPPLER 374 максимальная толщина отнесена далеко к задней кромке, вследствие чего его обтекание остается ламинарным в широких пределах. Он применяется преимущественно на скоростных моделях, а также на тяжелых планерах. Изменение положения центра давления у него довольно значительно.

Профиль крыла следует выбирать таким, чтобы изменение положения центра давления было минимальным. При этом предполагается, что профиль горизонтального оперения симметричен. Если необходим хорошо несущий профиль с неизменным в широких пределах положением центра давления, то следует выбирать NACA M6 или CLARK YH.

Вот и все. На первый случай этих сведений вполне достаточно, чтобы, так сказать, "въехать в тему", поддержать умный разговор с моделистами, и главное, грамотно выбрать прототип для будущей модели. Я намеренно избегал сложных расчетов по хитрым формулам. Моделист, который в душе конструктор, сам к ним придет, а летчику достаточно навскидку определить, с чем он имеет дело.

Вот он - грамотный прототип

Так вот, опираясь на вышеизложенное, попробуем представить, как может выглядеть модель для первоначального обучения пилотированию. Скорее всего это будет высокоплан с удлиненным фюзеляжем, развитыми горизонтальным оперением и килем, профилем крыла CLARK YH и, если c элеронами, то с небольшим поперечным V, а если без элеронов, то с поперечным V побольше.

А теперь посмотрите на "Картоныча"...

Дальше дело за вами. Можно, взяв за основу геометрию "Картоныча", сделать цельнобальзового красавца (если есть деньги и время), можно попытаться сконструировать аппарат из доступных материалов (если денег маловато), можно этого самого "Картоныча" купить (если времени нет), если нет ни времени, ни денег - бросьте заниматься авиамоделизмом. Говоря: взять за основу геометрию самолета, я имею ввиду главные размерения, соотношение площадей, веса, профили и т.п. Внешний облик, а тем более, конструкция, материалы могут быть любые. Здесь есть простор для творчества. Кроме того, можно улучшить летные характеристики модели методами, о которых упоминалось выше.

Мало ли кто что напридумывал...

"Не верю..."

(К. Станиславский)

При внесении изменений в прототип бережно относитесь к аэродинамической схеме. Если изменяете ее, то проводите проверочные расчеты.

Типичный случай. Некий моделист заявляет: "Я такой самолет уже делал. Летает безобразно. Болтается, как... в проруби". Странно, самолет известный. Начинаешь выяснять, в чем дело. Оказывается, при внесении изменений в прототип под свою технологию и материалы он изменил профиль крыла - чуть-чуть. Не понравилось, что рулевая машинка выступает за плоскость. Ему и невдомек, что из предусмотренного профиля CLARK YH у него получился профиль близкий к EPPLER375, у которого при углах атаки в диапазоне от 4 до 25 градусов центр давления перемещается в довольно широких пределах. Чтобы модель с крылом такого профиля имела достаточную продольную устойчивость, ее горизонтальное оперение должно быть намного более эффективным. Улучшить стабилизирующий эффект горизонтального оперения можно было бы, использовав для него симметричный профиль относительной толщины около 12%. Подъемная сила, развиваемая таким профилем, примерно на 10% больше, чем у плоского, который применяется для простоты изготовления. Но моделист не был конструктором, он был летчиком.

Вообще, изменения, вносимые в прототип должны преследовать вполне определенные четко сформулированные цели - ради чего менять. Нельзя улучшить прототип вообще. Можно улучшить внешний вид, но тогда надо быть готовым к тому, что самолет станет более трудоемким, а значит, дороже. Или наоборот, подчинить изменения простоте изготовления и уменьшению стоимости, но тогда, возможно, он потеряет изящность, а всем известно, что некрасивые самолеты плохо летают. Замена материалов - чревата серьезными конструктивными переделками силовой схемы и, как правило, увеличением веса аппарата. И т.д. Опытные моделисты доводят модель годами, улучшая ее постепенно, от образца к образцу приближаясь к оптимуму. И если взять такую модель за прототип и начать курочить… Хорошие конструкторские решения никогда не лежат на поверхности. Не считайте себя заведомо умней разработчика прототипа. Если вам кажется, что какой-то узел можно сделать проще и лучше, то постарайтесь понять, а почему же автор сделал по-другому? Если уверены в своей правоте - делайте по-своему. Потом, возможно, вы поймете, в чем было дело, да будет поздно.

Совет начинающим. Если вы решили сами сделать модель (особенно если это ваша первая модель), стройте самолет по известному, проверенному прототипу, лучше из посылки. Не пытайтесь сразу вносить в прототип существенные изменения. Стройте модель, как она есть. Это даст вам возможность прощупать ее в буквальном смысле слова, понять идею, заложенную автором в модель. Вполне возможно, что в процессе постройки к вам будут приходить мысли по модернизации, улучшению и т.д. Мой совет - воздержитесь от немедленного претворения их в жизнь, лучше запишите и используйте в процессе постройки следующей модели, когда за прототип вы возьмете уже построенный вами самолет.

Кстати, вариации на тему того или иного прототипа - обычная практика моделистов. Как правило, строится ряд моделей имеющих одного предка с последовательно вносимыми изменениями. Зачастую последняя модель напоминает исходную лишь отдаленно. Иногда в ряду получается выдающийся самолет (не обязательно последний), он-то и становится прототипом для самолетов других моделистов. Не надо понимать разработку темы буквально, как постройку ряда однотипных самолетов подряд (хотя и такое бывает, у спортсменов например). Обычно у моделиста находится в разработке несколько тем. Между экземплярами моделей в ряду может пройти не один год. И все-таки, каким бы опытным моделист ни был, открывая новую тему, он старается сделать первый образец, по возможности строго следуя прототипу "как он есть".

"- А есть такой же, но без крыльев?

Будем искать..."

(Бриллиантовая рука)

Многие начинающие моделисты хотят начать с постройки если не точной копии, то, по крайней мере, модели похожей на настоящий самолет. Что можно сказать по этому поводу? Да ради бога! Если не получится, то вы просто потеряете деньги и время, но зато реально оцените свои силы и приобретете опыт, который тоже дорогого стоит. У настоящего моделиста неудача (а от неудач никто не застрахован) не отобьет охоты заниматься любимым хобби. Однако конструирование модели-копии имеет особенности, о которых следует упомянуть.

Одним из параметров подобия модели и ее прототипа является равенство для них чисел Рейнольдса. С достаточной точностью это число равно Re = 70vh , где v - скорость полета, м/с; h - хорда крыла, мм.

Например, для спортивного самолета, у которого хорда крыла равна 1500 мм, скорость полета - 100 м/с (360 км/ч) Re = 70х100х1500 = 10500000. Для модели этого самолета, выполненной в масштабе 1:10, хорда крыла равна 150 мм, скорость 10 м/с (36км/ч) получаем число Рейнольдса Re = 70х10х150 = 105000, т.е. в 100 раз меньше. Такая разница исключает прямой перенос аэродинамических характеристик с прототипа на модель.

Вообще, убеждение, что точное копирование геометрии прототипа, обладающего высокими летными качествами, обеспечит хорошие летные характеристики модели, опасное убеждение. Практика показывает прямо противоположное. Лишь в немногих случаях точная копия отвечает специфическим требованиям к аэродинамике модели, в частности к ее устойчивости. Поэтому при громадном разнообразии типов и конструкций самолетов, выбор прототипа для модели является не простой задачей. Именно поэтому авиамодельные фирмы для своих серийных моделей-копий используют всего полтора-два десятка прототипов. Мало того, чтобы самолет, модель которого хочется построить, нравился. Как правило, при ближайшем рассмотрении простой расчет по номограмме показывает, что устойчивость модели будет явно недостаточна. Что делать? Ответ очевиден - улучшить устойчивость модели, например, удлинить фюзеляж, изменить соотношение площадей, развить хвостовое оперение, увеличить поперечное V крыла и т.д. Правда, может получиться так, что после проведения всех этих мероприятий модель окажется мало похожей на свой прототип.

И наконец, это уже мое личное мнение, какой выбрать самолет? Пусть меня назовут пещерным русофилом, но я никогда не буду строить фашистский Fw-190. Тем более что замечательных русских самолетов, хорошо летающих и красивых, очень много. Тут вообще непаханое поле для моделиста. Кроме того, приятно выйти в поле с нашим самолетом, когда все вокруг летают на импортных серийных аппаратах. Характерно, что наши самолеты, например, времен 2-й мировой войны, отлично масштабируются с минимальными искажениями, их конструкцию зачастую можно впрямую переложить на модель. Но окончательный выбор, конечно, за вами. Вам строить, вам и летать.

От автора

Огромную помощь в написании главы об основах аэродинамики автору оказал наш коллега, Владимир Васильков, за что ему большое спасибо. Практически это наша совместная работа, где вклад соавтора больше, чем мой.

Номограмма и некоторые другие примеры взяты из книги Р. Вилле "Постройка летающих моделей копий" пер. с нем. В.Н. Пальянова.