Что такое активная и реактивная электроэнергия? Электрический ракетный двигатель Электродуговой ракетный двигатель.

Изобретение относится к области электрических реактивных двигателей (ЭРД) импульсного действия, использующих преимущественно способ создания реактивной тяги с помощью электронной детонации (патент РФ №2129594, з. №96117878 от 12.09.1996 г. МПК F03H 1/00).

Известен импульсный плазменный реактивный двигатель торцевого типа на твердом рабочем теле тефлон (аналог фторопласта) (патент РФ №2146776, з. №98109266 от 14.05.1998 г., МПК F03H 1/00) с преобладающим электронно-детонационным типом разряда (Ю.Н. Вершинин «Электронно-тепловые и детонационные процессы при электрическом пробое твердых диэлектриков», Уральское отделение РАН, Екатеринбург, 2000 г.). В этих условиях реализуется выход преимущественно ионного компонента в продуктах истечения при перекрытии разрядом разрядного промежутка и ее последующей нейтрализации на завершающей дуговой фазе разряда. Такой ЭРД, названный по типу основного разряда как электронно-детонационный ракетный двигатель (ЭДРД), позволяет получать на рабочем теле тефлон более высокие удельные параметры. Однако в таком ЭРД при наработке ресурса зафиксированы неустойчивости разрядных процессов по поверхности рабочего тела в виде дрейфующих плазменных жгутов. Указанное явление ведет к интенсивному местному уносу рабочего тела из данных зон, что приводит к снижению ресурсных характеристик ЭРД ввиду неравномерности выработки рабочего тела в разрядном промежутке и низкого уровня стабильности выходных характеристик. Кроме того, в силу конструктивной специфики систем хранения и подачи для твердофазного рабочего тела, сформованного преимущественно в виде шашек цилиндрического типа, запасы его на борту ограничены габаритными возможностями электрической реактивной двигательной установки, и ресурс таких двигателей по суммарному импульсу тяги оказывается недостаточным для многих полетных задач.

Известен импульсный плазменный электрический реактивный двигатель (патент РФ №2319039, з. №2005102848 от 04.02.2005 г., МПК F03H 1/00) линейного типа, состоящий из анода и катода с разрядным промежутком в виде рабочей поверхности из диэлектрика, покрытого пленкой жидкого или гелеобразного рабочего тела. При этом в зоне между анодом и катодом с возможностью возвратно-поступательного движения помещен подвижный источник подачи жидкого или гелеобразного рабочего тела, содержащий пористо-капиллярный эластичный фитиль, начальный участок которого контактирует с жидким рабочим телом, находящимся в топливном баке.

Учитывая космические условия эксплуатации, в качестве рабочего тела применяют жидко фазный диэлектрик с низким значением давления насыщенных паров, например вакуумное масло или синтетические жидкости, а рабочую поверхность разрядного промежутка выполняют из смачиваемого рабочим телом диэлектрического материала, например керамики или капролона.

Такой двигатель имеет более высокие характеристики по ресурсу включений и удобству эксплуатации, чем аналог (патент РФ №2146776, з. №98109266 от 14.05.1998 г, МПК F03H 1/00) однако основные удельные характеристики близки друг к другу.

Задачей предлагаемого изобретения является создание электронно-детонационного двигателя линейного типа с повышенными удельными характеристиками и кпд.

Задача решается в электрическом реактивном двигателе линейного типа, состоящем из анода и катода, подключенных к генератору высоковольтных импульсов, с разрядным промежутком между ними, заполненным жидким рабочим телом в виде пленки, путем выполнения анода и катода в виде магнитопроводов, подключенных к источнику магнитного поля с ориентацией магнитных силовых линий вдоль разрядного промежутка, причем источник магнитного поля электрически разобщен с электродами анод и катод путем выполнения магнитопроводов из материала с высоким электрическим сопротивлением, например из феррита.

В этой конструкции исключается электрическое шунтирование разрядного промежутка анод-катод что, в свою очередь, позволяет максимально удобно организовать магнитные силовые линии вдоль разрядного промежутка.

Наличие магнитных силовых линий вдоль разрядного промежутка импульсного ЭРД на основе электронно-детонационного типа разряда организует движение электронов рабочего тела не по прямым траекториям (по кратчайшему пути), а по винтовым траекториям (А.И. Морозов «Введение в плазмодинамику» Физматлит, Москва, 2006 год), что ведет к дополнительному увеличению актов ионизации атомов рабочего тела. Как следствие, это приведет к увеличению тяги и кпд импульсного ЭРД.

Заявляемое изобретение поясняется чертежом. На приведенной фигуре показана конструктивная схема предлагаемого ЭРД. Основным его элементом является разрядный промежуток 1, содержащий систему из двух встречно-расположенных электродов, 2 - анод и 3 - катод, выполненных из магнитомягкого материала. Поступление рабочего тела в межэлектродный промежуток происходит методом его смачивания через пористо-капиллярный эластичный фитиль (смачиватель) 4, установленный, например, на подвижной каретке 5. Периодическое перемещение каретки 5 вдоль разрядного промежутка 1 осуществляется с помощью электропривода 6. Магнитное поле создаваемое постоянным магнитом или электромагнитом 7, через ферритовые магнитопроводы 8 поступает к электродам 2 и 3, выполненным из магнитомягкого материала, замыкаясь через разрядный промежуток 1 системой магнитных силовых линий.

ЭРД такого типа работает следующим образом. Перед началом импульсной работы ЭРД, система управления подает электрическую команду длительностью несколько секунд на электропривод 6 смачивателя 4 для нанесения жидкофазной пленки на рабочую поверхность 1 в межэлектродной зоне 2 (анод) - 3 (катод). Система подачи жидкого рабочего тела от бака к смачивателю условно не показана, так как является составной частью электрической реактивной двигательной установки. В случае использования в качестве источника магнитного поля 7 электромагнита, на его обмотку подается электрический потенциал постоянного тока или импульсного, синхронизированного с подачей высоковольтных импульсов на электроды 2 и 3 (анод, катод) ЭРД.

При подаче высоковольтных импульсов напряжения на электроды 2 и 3, по поверхности жидкой пленки распространяется разряд, генерирующий ионную (электронно-детонационный тип разряда), а затем плазменную (дуговую) составляющие разряда, создающие реактивный импульс тяги. При этом электроны, перемещаясь вдоль силовых магнитных линий разрядного промежутка по винтовой траектории, резко интенсифицируют процесс соударения с нейтральными атомами жидкого рабочего тела каждой из вышеупомянутых стадий разряда, что ведет к увеличению ионного компонента продуктов истечения, а это, в свою очередь, приводит к увеличению кпд и тяги двигателя, т.к. существенно возрастает процент высокоскоростных ионов по отношению к общей массе ионного и плазменного компонентов.

Импульсный электрический реактивный двигатель линейного типа, состоящий из анода и катода, подключенных к генератору высоковольтных импульсов, с разрядным промежутком между ними, заполненным жидким рабочим телом в виде пленки, отличающийся тем, что анод и катод являются магнитопроводами, подключенными к источнику магнитного поля с ориентацией магнитных силовых линий вдоль разрядного промежутка, причем источник магнитного поля электрически разобщен с электродами анод и катод путем выполнения магнитопроводов из материала с высоким электрическим сопротивлением, например из феррита.

Похожие патенты:

Изобретение относится к космической технике, в частности к электрореактивным двигателям и двигательным установкам (ЭРД и ЭРДУ), созданным на базе ускорителей с замкнутым дрейфом электронов, называемых стационарными плазменными холловскими двигателями, и может быть использовано для повышения эффективности и стабильности характеристик при эксплуатации ЭРД и ЭРДУ.

Изобретение относится к области электроракетных двигателей. В модели стационарного плазменного двигателя (СПД), содержащей кольцевую диэлектрическую разрядную камеру, с расположенным внутри нее кольцевым анодом-газораспределителем, магнитную систему и катод, внутри его разрядной камеры установлен дополнительный газораспределитель, выполненный в виде кольца, пристыкованного через изолятор к аноду-газораспределителю. В указанном кольце выполнены соосные глухие отверстия, равномерно расположенные по азимуту, каждое из которых закрыто крышкой, имеющей сквозное калиброванное отверстие. Каждое из глухих отверстий с крышкой образует емкость, наполненную кристаллическим йодом, причем дополнительный газораспределитель установлен внутри разрядной камеры так, что его калиброванные отверстия обращены к аноду-газораспределителю. Технический результат - возможность определения принципиальной возможности работы СПД на рабочем теле - йод - при минимальных доработках самого двигателя и исключении специальной системы подачи йода и нагревателей тракта подачи, что значительно сокращает средства и время, необходимые для первого этапа исследования работоспособности и характеристик стационарного плазменного двигателя на кристаллическом йоде. 2 ил.

Изобретение относится к электроракетному двигателю с замкнутым дрейфом электронов. Электроракетный двигатель с замкнутым дрейфом электронов содержит основной кольцевой ионизационный и ускорительный канал, по меньшей мере, один полый катод, кольцеобразный анод, трубку с коллектором для питания анода ионизируемым газом, и магнитную цепь для создания магнитного поля в основном кольцевом канале. Основной кольцевой канал образован вокруг оси ЭРД. Анод концентричен указанному основному кольцевому каналу. Магнитная цепь содержит, по меньшей мере, один аксиальный магнитопровод, окруженный первой катушкой и внутренним тыльным полюсным наконечником, образующим тело вращения, и несколько наружных магнитопроводов, окруженных наружными катушками. Указанная магнитная цепь дополнительно содержит по существу радиальный, наружный, первый полюсный наконечник, образующий вогнутую внутреннюю периферическую поверхность, и по существу радиальный, внутренний, второй полюсный наконечник, образующий выпуклую наружную периферическую поверхность. Указанные периферические поверхности представляют собой соответственным образом откорректированные профили. Эти профили отличаются от круговых цилиндрических поверхностей с целью образования между ними зазора переменной ширины. Максимальная величина зазора имеет место на участках, совпадающих с местоположением наружных катушек. Минимальная величина зазора имеет место на участках, расположенных между указанными наружными катушками, так чтобы создавалось равномерное радиальное магнитное поле. Техническим результатом является создание ЭРД высокой мощности с замкнутым дрейфом электронов, в котором одновременно реализовано хорошее охлаждение основного кольцевого канала, в указанном канале получено равномерное радиальное магнитное поле, и минимизирована длина провода, необходимого для обмоток, и минимизирована масса обмоток. 7 з.п. ф-лы, 8 ил.

Изобретение относится к области плазменных двигателей. Устройство содержит, по меньшей мере: один главный кольцевой канал (21) ионизации и ускорения, при этом кольцевой канал (21) имеет открытый конец, анод (26), находящийся внутри канала (21), катод (30), находящийся снаружи канала на его выходе, магнитную цепь (4) для создания магнитного поля в части кольцевого канала (21). Магнитная цепь содержит, по меньшей мере, кольцевую внутреннюю стенку (22), кольцевую наружную стенку (23) и дно (8), соединяющее внутреннюю (22) и наружную (23) стенки и образующее выходную часть магнитной цепи (4), при этом магнитная цепь (4) выполнена с возможностью создания на выходе кольцевого канала (21) магнитного поля, не зависящего от азимута. Технический результат - повышение вероятности ионизирующих столкновений между электронами и атомами инертного газа. 3 н. и 12 з.п. ф-лы, 6 ил.

Изобретение относится к плазменной технике и к плазменным технологиям и может использоваться в импульсных плазменных ускорителях, применяемых, в частности, в качестве электроракетных двигателей. Катод (1) и анод (2) эрозионного импульсного плазменного ускорителя (ЭИПУ) имеют плоскую форму. Между разрядными электродами (1 и 2) установлены две диэлектрические шашки (4), выполненные из абляционного материала. Торцевой изолятор (6) установлен между разрядными электродами в области размещения диэлектрических шашек (4). Устройство (9) инициирования электрического разряда подключено к электродам (8). Емкостный накопитель энергии (3) системы электропитания подключен через токоподводы к разрядным электродам (1 и 2). Разрядный канал ЭИПУ образован поверхностями разрядных электродов (1 и 2), торцевого изолятора (б) и торцевых частей диэлектрических шашек (4). Разрядный канал выполнен с двумя взаимно перпендикулярными срединными плоскостями. Разрядные электроды (1 и 2) установлены симметрично относительно первой срединной плоскости. Диэлектрические шашки (4) установлены симметрично относительно второй срединной плоскости. Касательная к поверхности торцевого изолятора (6), обращенной к разрядному каналу, направлена под углом от 87° до 45° относительно первой срединной плоскости разрядного канала. В торцевом изоляторе (6) выполнено углубление (7) с прямоугольным поперечным сечением. В углублении (7) со стороны катода (1) расположены электроды (8). Касательная к фронтальной поверхности углубления (7) направлена под углом от 87° до 45° относительно первой срединной плоскости разрядного канала. Углубление (7) вдоль поверхности торцевого изолятора (6) имеет форму трапеции. Большее основание трапеции расположено у поверхности анода (2). Меньшее основание трапеции расположено у поверхности катода (1). На поверхности торцевого изолятора (6) выполнены три прямолинейные канавки, ориентированные параллельно поверхностям разрядных электродов (1 и 2). Технический результат заключается в увеличении ресурса, повышении надежности, тяговой эффективности, эффективности использования рабочего вещества и стабильности тяговых характеристик ЭИПУ за счет равномерного испарения рабочего вещества с рабочей поверхности диэлектрических шашек. 8 з.п. ф-лы, 3 ил.

Изобретение относится к космической технике, к классу электрореактивных двигателей и предназначено для управления движением космических аппаратов малой (до 5 Н) тягой. Циклотронный плазменный двигатель содержит корпус плазменного ускорителя, соленоиды (катушки индуктивности), электрическую цепь с катодами-компенсаторами. При этом содержится автономный источник ионов, разделитель потоков электронов и ионов. Плазменный ускоритель представляет собой асинхронный циклотрон. Циклотрон разделен вдоль на дуанты двумя соосными парами параллельных сеток с зазорами. Дуанты создают однородные, равные и постоянные ускоряющие электрические поля взаимно противоположного направления векторов напряженности. Циклотрон имеет по числу основных направлений создания тяги выходные каналы плазменного ускорителя - основные переходники-ферромагнетики с катушками индуктивности. Выходные прямые газовые диэлектрические каналы двигателя соединены с основными переходниками через пропускные электроклапаны. Эти каналы соединены между собой переходниками-ферромагнетиками с катушками индуктивности. Техническим результатом является увеличение удельного импульса тяги с сохранением и возможным уменьшением массогабаритных характеристик двигательных установок на космических аппаратах при относительно невысокой мощности энергопотребления. 2 з.п. ф-лы, 2 ил.

Изобретение относится к пучковым технологиям и может быть использовано для компенсации (нейтрализации) пространственного заряда пучка положительных ионов электроракетных двигателей, в частности, для применения в двигательных установках микро- и наноспутников. Способ нейтрализации объемного заряда ионного потока электроракетной двигательной установки путем эмиссии электронов множественными автоэмиссионными источниками. Источники расположены вокруг каждого из электроракетных двигателей указанной установки. Управление токами эмиссии отдельных автоэмиссионных источников или групп указанных множественных автоэмиссионных источников производят независимо друг от друга. Техническим результатом является снижение расхода рабочего тела ЭРД, в том числе многорежимного ЭРД или многодвигательной установки, обеспечение минимального времени выхода на рабочий режим нейтрализации и быстрого переключения электронного тока согласовано с режимом работы такого ЭРД, оптимизирование транспорта электронов в область нейтрализации с тем, чтобы уменьшить расходимость ионного пучка или отклонения его, изменяя таким образом направление ионной тяги. 5 з.п. ф-лы.

Изобретение относится к реактивным средствам перемещения преимущественно в свободном космическом пространстве. Предлагаемое средство перемещения содержит корпус (1), полезную нагрузку (2), систему управления и не менее одной кольцевой системы сверхпроводящих фокусирующе-отклоняющих магнитов (3). Каждый магнит (3) прикреплен к корпусу (1) силовым элементом (4). Предпочтительно использовать две описанных кольцевых системы, расположенных в параллельных плоскостях («друг над другом»). Каждая кольцевая система предназначена для длительного хранения циркулирующего в ней потока (5) высокоэнергичных электрически заряженных частиц (релятивистских протонов). Потоки в кольцевых системах взаимно противоположны и вводятся в эти системы перед полетом (на орбите старта). К выходу одного из магнитов (3) «верхней» кольцевой системы прикреплено устройство (6) для выведения части потока (7) во внешнее космическое пространство. Аналогично производится выведение части потока (9) через устройство (8) одного из магнитов «нижней» кольцевой системы. Потоки (7) и (9) создают реактивную тягу. Устройства (6) и (8) могут быть выполнены в виде отклоняющей магнитной системы, нейтрализатора электрического заряда потока или ондулятора. Техническим результатом изобретения является увеличение энергоотдачи рабочего тела, создающего тягу. 1 н. и 3 з.п. ф-лы, 2 ил.

Группа изобретений относится к области электрореактивных двигателей, а именно к классу плазменных ускорителей (холловских, ионных), использующих в своем составе катоды. При необходимости оно может быть использовано также в смежных областях техники, например, при проведении испытаний катодов для источников плазмы или катодов для сильноточных плазменных двигателей. Способ ускоренных испытаний катодов плазменных двигателей включает проведение автономных огневых испытаний катода, осуществление многократных включений катода, измерение его базовых параметров деградации, проведение испытаний в форсированном режиме работы катода. Испытания разбивают на этапы. При выполнении каждого этапа производят форсирование одного из факторов деградации катода при одновременном воздействии на катод всех остальных факторов деградации в эксплуатационном режиме. Форсирование каждого из факторов деградации осуществляют по меньшей мере один раз. Техническим результатом группы изобретения является осуществление комплексного учета воздействия всех базовых факторов деградации катода при проведении ускоренных ресурсных испытаний, существенное сокращение времени проведения ресурсных испытаний катода и обеспечение возможности исследования воздействия каждого фактора деградации на ресурсные характеристики катода. 2 н. и 5 з.п. ф-лы, 4 ил.

Изобретение относится к области электрореактивных двигателей, а именно, к широкому классу плазменных ускорителей (холловских, ионных, магнитоплазмодинамических и др.), использующих в своем составе катоды. Технический результат-повышение ресурса и надежности работы катода при больших токах разряда путем выравнивания температур эмитирующих электроны элементов и обеспечения равномерности распределения рабочего тела по этим элементам. Катод плазменного ускорителя по первому варианту содержит полые эмитирующие электроны элементы, трубопровод с каналами для подачи рабочего тела к полым эмитирующим электроны элементам, единый теплопровод, охватывающий с внешней стороны каждый из полых эмитирующих электроны элементов, выполненных в виде тела вращения. Материал теплопровода имеет коэффициент теплопроводности не ниже коэффициента теплопроводности материала этих элементов. Каждый из полых эмитирующих электроны элементов присоединен к отдельному каналу трубопровода, а в каждом канале со стороны подачи рабочего тела установлен дроссель, причем поперечные сечения отверстий дросселей выполнены одинаковыми.Во втором варианте изобретения единый теплопровод охватывает и с внешней стороны по всей длине образующей и по выходному торцу каждый из полых эмитирующих электроны элементов, выполненных в виде тела вращения. В выходном торце единого теплопровода выполнены отверстия, оси которых совпадают с осями полых эмитирующих электроны элементов, причем проходные сечения отверстий в едином теплопроводе не больше проходных сечений отверстий в полых эмитирующих электроны элементах.2 н.п. и 2 з.п.ф-лы, 2 ил.

Изобретение относится к плазменному маневровому реактивному двигателю на основе эффекта Холла, используемому для перемещения спутников с помощью электричества. Плазменный реактивный двигатель на основе эффекта Холла содержит основной кольцевой канал ионизации и ускорения. Канал имеет открытый выходной конец. Двигатель также содержит, по меньшей мере, один катод, кольцевой анод, трубопровод с распределителем для подачи способного к ионизации газа в основной кольцевой канал и магнитную цепь для создания магнитного поля в основном кольцевом канале. Анод концентричен основному кольцевому каналу. Основной кольцевой канал содержит расположенные вблизи открытого выходного конца участок внутренней кольцевой стенки и участок наружной кольцевой стенки. Каждый из указанных участков содержит пакет расположенных рядом друг с другом проводящих или полупроводящих колец в виде пластин. Пластины разделены тонкими слоями изолирующего материала. Техническим результатом является устранение указанных в описании недостатков и, в частности, повышение долговечности плазменных реактивных двигателей на основе эффекта Холла при сохранении высокого уровня их энергетической эффективности. 9 н.п. ф-лы, 5 ил.

Изобретение относится к электрореактивным двигателям, использующим электронно-детонационный тип разряда. Двигатель состоит из анода и катода с разрядным промежутком между ними, заполненным жидким рабочим телом в виде пленки. Электроды анод и катод выполнены из магнитомягкого материала, а источник магнитного поля электрически изолирован от электродов магнитопроводами типа феррит. Изобретение позволяет повысить удельные характеристики и кпд двигателя. 1 ил.

Электрический ракетный двигатель - ракетный двигатель, принцип действия которого основан на использовании, для создания тяги электрической энергии, получаемой от энергоустановки, находящейся на борту космического аппарата. Основная сфера применения - небольшая коррекция траектории, а также ориентация в пространстве космических аппаратов. Комплекс, состоящий из электрического ракетного двигателя, системы подачи и хранения рабочего тела, системы автоматического управления и системы электропитания, называется электроракетной двигательной установкой.

Упоминание о возможности использования в ракетных двигателях электрической энергии для создания тяги встречается в трудах К. Э. Циолковского. В 1916-1917 гг. были проведены первые эксперименты Р. Годдардом, и уже в 30-х гг. XX в. под руководством В. П. Глушко был создан один из первых электрических ракетных двигателей.

В сравнении с другими ракетными двигателями электрические позволяют увеличить срок существования космического аппарата, и при этом значительно снижается масса двигательной установки, что позволяет увеличить полезную нагрузку, получить наиболее полные массогабаритные характеристики. Используя электрические ракетные двигатели , можно сократить длительность полета к дальним планетам, а также сделать полет к какой-либо планете возможным.

В середине 60-х гг. XX в. активно велись испытания электрических ракетных двигателей на территории СССР и США, а уже в 1970-х гг. они использовались как штатные двигательные установки.

В России классификация идет по механизму ускорения частиц. Можно выделить следующие типы двигателей: электротермические (электронагревные, электродуговые), электростатические (ионные, в том числе коллоидные, стационарные плазменные двигатели с ускорением в анодном слое), сильно-точные (элекромагнитные, магнитодинамические) и импульсные двигатели.

В качестве рабочего тела возможно применение любых жидкостей и газов, а также их смеси. Для каждого типа электродвигателя необходимо применять соответствующие рабочие тела для достижения наилучших результатов. Для электротермических традиционно применяется аммиак, в работе электростатических двигателей используется ксенон, в сильноточных - литий, а для импульсных наиболее эффективным рабочим телом является фторопласт.

Одним из главных источников потерь является энергия, затрачиваемая на ионизацию на единицу ускоренной массы. Преимуществом электрических ракетных двигателей является малый массовый расход рабочего тела, а также высокая скорость истечения ускоренного потока частиц. Верхняя граница скорости истечения теоретически находится в пределах скорости света.

В настоящее время для различных типов двигателей скорость истечения колеблется в пределах от 16 до 60 км/с, хотя перспективные модели смогут дать скорость истечения потока частиц до 200 км/с.
Недостатком является очень малая плотность тяги, также необходимо отметить: внешнее давление не должно превышать давление в ускорительном канале. Электрическая мощность современных электрических ракетных двигателей, применяемых на космических аппаратах, колеблется от 800 до 2000 Вт, хотя теоретическая мощность может достигать мегаватт. КПД электрических ракетных двигателей невысок и варьируется от 30 до 60%.

В ближайшее десятилетие этот тип двигателей в основном будет выполнять задачи по коррекции орбиты космических аппаратов, находящихся как на геостационарных, так и на низких околоземных орбитах, а также для доставки космических аппаратов с опорной околоземной орбиты на более высокие, например геостационарную.

Замена жидкостного ракетного двигателя, выполняющего функцию корректора орбиты, на электрический позволит снизить массу типового спутника на 15%, а если увеличить срок его активного пребывания на орбите, то на 40%.

"В мире науки" № 5 2009 стр. 34-42


ОСНОВНЫЕ ПОЛОЖЕНИЯ
*
В обычных ракетных двигателях тяга возникает в результате сжигания химического топлива. В злектрореактивных она создается посредством ускорения электрическим или магнитным полем облака заряженных частиц или плазмы.
*
Несмотря на то что электрические ракетные двигатели характеризуются гораздо меньшей тягой, они позволяют при той же массе топлива в итоге разогнать космический аппарат до гораздо большей скорости.
*
Способность достигать высоких скоростей и высокий КПД использования рабочего вещества («топлива») делают электрореактивные двигатели перспективными для дальних космических полетов.

Одинокий во мраке космоса, зонд Dawn («Рассвет») NASA несется за орбиту Марса к поясу астероидов. Он должен собрать новые сведения о начальных этапах образования Солнечной системы: исследовать астероиды Весту и Цереру, представляющие собой крупнейшие остатки эмбрионов планет, в результате столкновения и взаимодействия которых друг с другом около 4,5-4,7 млрд лет назад сформировались сегодняшние планеты.
Однако этот полет примечателен не только своей целью. Dawn, стартовавший в октябре 2007 г., оснащен плазменным двигателем, способным сделать реальностью полеты на большие расстояния. На сегодняшний день существует несколько типов таких двигателей. Тяга в них создается посредством ионизации и ускорения электрическим полем заряженных частиц, а не путем сжигания жидкого или твердого химического топлива, как в обычных.
Создатели зонда Dawn из Лаборатории реактивной тяги NASA выбрали плазменный двигатель, поскольку для достижения пояса астероидов ему потребуется в десять раз меньше рабочего вещества, чем двигателю на химическом топливе. Традиционный ракетный двигатель позволил бы зонду Dawn достичь либо Весты, либо Цереры, но не обеих.
Электроракетные двигатели быстро завоевывают популярность. Недавний полет космического зонда Deep Space 1 NASA к комете стал возможным благодаря применению электрической тяги. Плазменные двигатели создавали также тягу, требовавшуюся для попытки посадки японского зонда Hayabusa на астероид и для полета космического аппарата SMART-1 Европейского космического агентства к Луне. В свете продемонстрированных преимуществ разработчики в США, Европе и Японии при планировании дальних полетов выбирают именно такие двигатели для будущих миссий по исследованию Солнечной системы и поиску за ее пределами планет, подобных Земле. Плазменные двигатели также позволят превратить космический вакуум в лабораторию для фундаментальных физических исследований.

Близится эра долгих полетов

Возможность использования электричества при создании двигателей для космических аппаратов рассматривалась еще в первом десятилетии XX в. В середине 1950-х гг. Эрнст Штулингер (Trnst Stuhlinger), член легендарной команды немецких ракетчиков Вернера фон Брауна (Wernher von Braun), которая возглавила космическую программу США. перешел от теории к практике. Несколькими годами позднее инженеры Гленновского исследовательского центра NASA (который тогда назывался Льюисовским) создали первый работоспособный плазменный двигатель. В 1964 г. таким двигателем, который использовался для коррекции орбиты перед вхождением в плотные слои атмосферы, был оснащен аппарат, совершивший суборбитальный полет в рамках программы Space Electric Rocket Test.
Концепция плазменных электрореактивных двигателей независимо разрабатывалась и в СССР. С середины 1970-х гг. советские инженеры использовали такие двигатели для обеспечения ориентации и стабилизации геостационарной орбиты телекоммуникационных спутников, поскольку они расходуют малое количество рабочего вещества.

Ракетные реалии

Достоинства плазменных двигателей особенно впечатляют в сравнении с недостатками обычных ракетных двигателей. Когда люди представляют себе стремящийся сквозь черную пустоту к далекой планете космический корабль, перед их мысленным взором возникает длинный факел пламени из сопла двигателей. На деле все выглядит совершенно иначе: почти все топливо расходуется в первые минуты полета, так что дальше корабль движется к своей цели по инерции. Ракетные двигатели на химическом топливе поднимают космические аппараты с поверхности Земли и позволяют корректировать траекторию в ходе полета. Но для исследования дальнего космоса они непригодны, поскольку для них требуется такое большое количество топлива, поднять которое с Земли на орбиту практичным и экономически приемлемым способом не представляется возможным.
В длительных полетах, чтобы достичь высокой скорости и точности выхода на заданную траекторию без дополнительных затрат топлива, зондам приходилось отклоняться от своего пути в направлении планет или их спутников, способных придать ускорение в нужном направлении за счет сил тяготения (эффект гравитационной рогатки, или маневр с использованием сил тяготения). Такой «окольный» маршрут ограничивает возможности запуска довольно короткими временными окнами, гарантирующими точное прохождение мимо небесного тела, которое должно играть роль гравитационного ускорителя.
Для проведения длительных исследований космический аппарат должен иметь возможность скорректировать траекторию движения, выйти на орбиту вокруг объекта и тем обеспечить условия выполнения поставленной задачи. Если совершить маневр не удастся, то время, доступное для наблюдений, будет очень коротким. Так, космический зонд New Horizons NASA запущенный в 2006 г., приблизившись к Плутону спустя девять лет, сможет наблюдать его в очень короткий промежуток времени, не превышающий одних земных суток.

Уравнение движения ракеты

Почему же до сих пор не был предложен способ отправить в космос достаточное количество топлива? Что препятствует решению данной проблемы?
Попробуем разобраться. Для объяснения используем основное уравнение движения ракеты - формулу Циолковского, которую специалисты применяют при расчете массы топлива, необходимой для данной задачи. Вывел ее в 1903 г. русский ученый К.Э. Циолковский, один из отцов ракетной техники и космонавтики.

ХИМИЧЕСКИЕ
И
ЭЛЕКТРИЧЕСКИЕ РАКЕТЫ


Химические и электрические системы создания тяги подходят для разных типов задач. Химические (слева) быстро создают большую тягу и поэтому позволяют быстро разгоняться до больших скоростей, но расходуют очень большие количества топлива. Такие характеристики подходят для полетов на небольшие расстояния.

Электрические ракетные двигатели (справа), в которых рабочим телом (топливом) служит плазма, т.е. ионизированный газ, развивают гораздо меньшую тягу, но расходуют несравненно меньше топлива, что позволяет им работать намного дольше. А в космической среде при отсутствии сопротивления движению малая сила, действующая длительное время, позволяет достичь таких же и даже более высоких скоростей. Эти характеристики делают плазменные ракеты подходящими для дальних полетов к нескольким пунктам назначения

По сути, данная формула математически описывает тот интуитивно осознаваемый факт, что чем выше скорость истечения продуктов сгорания из ракеты, тем меньше топлива нужно для осуществления данного маневра. Представьте себе подающего в бейсболе (ракетный двигатель), стоящего с корзиной мячей (топлива) на скейтборде (космическом аппарате). Чем выше скорость, с которой он бросает мячи назад (скорость истечения продуктов сгорания), тем с большей скоростью будет катиться скейтборд после того, как он бросит последний мяч, или, что эквивалентно, тем меньше мячей (топлива) потребуется ему для увеличения скорости скейтборда на заданную величину. Ученые обозначают это приращение скорости символом dV (читать дельта-вэ).
Более конкретно: формула связывает массу топлива, необходимую ракете для выполнения конкретной задачи в дальнем космосе, с двумя ключевыми величинами: скоростью истечения продуктов сгорания из сопла ракеты и значением dV , достижимым в результате сжигания данного количества топлива. Значение dV соответствует энергии, которую должен затратить космический аппарат для изменения своего движения по инерции и выполнения требуемого маневра. Для данной ракетной технологии (обеспечивающей данную скорость истечения) уравнение движения ракеты позволяет рассчитать массу топлива, необходимую для достижения требуемого значения dV , т.е. для выполнения необходимого маневра. Таким образом. dV можно рассматривать как «цену» задачи, поскольку затраты на вывод топлива на траекторию полета обычно составляют основную часть затрат на выполнение всей задачи.
В обычных ракетах на химическом топливе скорость истечения продуктов сгорания невелика (3-4 км/с). Уже одно это обстоятельство ставит под сомнение целесообразность их применения для дальних полетов. Кроме того, форма уравнения движения ракеты показывает, что с увеличением dV доля топлива в начальной массе космического аппарата («массовая доля топлива») растет экспоненциально. Следовательно, в аппарате для дальних полетов, требующих большого значения dV , на топливо придется почти вся стартовая масса.
Рассмотрим несколько примеров. В случае полета к Марсу с низкой околоземной орбиты требуемое значение dV составляет около 4,5 км/с. Из уравнения движения ракеты следует, что массовая доля топлива, необходимая для осуществления такого межпланетного перелета, составляет больше 2/3 . Для полетов в более далекие области Солнечной системы, например к внешним планетам, требуется dV от 35 до 70 км/с. На долю топлива в обычной ракете придется отвести 99,98 % стартовой массы. При этом для оборудования или иной полезной нагрузки места не останется. По мере того как пунктами назначения космических аппаратов становятся все более далекие области Солнечной системы, двигатели на химическом топливе будут становиться все более бесперспективными. Возможно, инженеры найдут способ существенно увеличить скорость истечения продуктов сгорания. Но это весьма непростая задача. Потребуется очень высокая температура горения, что ограничивается как количеством энергии, выделяемой в результате химической реакции, так и жаропрочностью материала стенок ракетного двигателя.

Плазменное решение

Плазменные двигатели позволяют получить гораздо более высокие скорости истечения. Тяга создается за счет ускорения плазмы - частично или полностью ионизированного газа - до скоростей, существенно превышающих предельные для обычных газодинамических двигателей. Плазма создается посредством сообщения газу энергии, например при облучении его лазером, микро- или радиочастотными волнами, либо с помощью сильных электрических полей. Избыточная энергия отрывает электроны от атомов или молекул, которые в результате этого приобретают положительный заряд, а оторванные электроны получают возможность свободно двигаться в газе, благодаря чему ионизированный газ становится гораздо лучшим проводником тока, чем металлическая медь. Поскольку плазма содержит заряженные частицы, движение которых в большой степени определяется электрическим и магнитным полями, воздействие на нее электрическим или электромагнитным полями способно ускорять ее компоненты и выбрасывать их в качестве рабочего вещества для создания тяги. Необходимые поля можно создавать с помощью электродов и магнитов, используя внешние антенны или проволочные катушки, либо путем пропускания тока через плазму.
Энергию для создания и ускорения плазмы обычно получают от солнечных батарей. Но для космических аппаратов, направляющихся за орбиту Марса, потребуются атомные источники энергии, т.к. при удалении от Солнца интенсивность потока солнечной энергии уменьшается. Сегодня в автоматических космических зондах используются термоэлектрические устройства, нагреваемые за счет энергии распада радиоактивных изотопов, но для более продолжительных полетов потребуются ядерные или даже термоядерные реакторы. Включаться они будут только после вывода космического аппарата на стабильную орбиту, находящуюся на безопасном расстоянии от Земли, до начала работы ядерное топливо должно поддерживаться в инертном состоянии.
До уровня практического применения разработаны три типа электроракетных двигателей. Шире всего применяется ионный двигатель, которым и был оснащен зонд Down.

Ионный двигатель

Идею ионного двигателя, одну из наиболее успешных концепций электрического метода создания тяги, выдвинул сто лет назад американский пионер ракетной техники Роберт Год-дард (Robert H. Goddard), будучи еще аспирантом Вустерского политехнического института. Ионные двигатели позволяют получать скорости истечения от 20 до 50 км/с (врезка на следующей стр.).
В наиболее распространенном варианте такой двигатель получает энергию от панелей фотоэлементов с запорным слоем. Он представляет собой короткий цилиндр размерами немного больше ведра, установленный в кормовой части космического аппарата. Из «топливного» бака в него подается газообразный ксенон, который поступает в ионизационную камеру, где электромагнитное поле отрывает от атомов ксенона электроны, создавая плазму. Ее положительные ионы вытягиваются и разгоняются до очень высоких скоростей электрическим полем между двумя сетчатыми электродами. Каждый положительный ион плазмы испытывает сильное притяжение к отрицательному электроду, расположенному в задней части двигателя, и поэтому ускоряется в направлении назад.
Истечение положительных ионов создает на космическом аппарате отрицательный заряд, который по мере накопления будет притягивать вылетевшие ионы обратно к аппарату, сводя тягу к нулю. Чтобы это предотвратить, используют внешний источник электронов (отрицательный электрод или электронную пушку), вводящий электроны в поток истекающих ионов. Таким образом обеспечивается нейтрализация истекающего потока, в результате чего космический аппарат остается электрически нейтральным.

Сегодня коммерческие космические аппараты (в основном - спутники связи на геостационарных орбитах) оснащены десятками ионных двигателей, которые используются для коррекции их положения на орбите и ориентации.
Первым в мире космическим аппаратом, в котором для преодоления земного тяготения при старте с околоземной орбиты была использовав на электрическая система создания тяги, стал в конце XX в. зонд Deep Space 1 Чтобы пролететь сквозь пылевой хвост кометы Боррелли, ему потребовалось увеличить скорость на 4,3 км/с, на что было израсходовано менее 74 кг ксенона (примерно такую массу имеет полная пивная бочка). Это самое большое на сегодня приращение скорости, полученное каким-либо космическим аппаратом с помощью тяги, а не гравитационной рогатки. Dawn вскоре должен превысить рекорд примерно на 10 км/с. Инженеры Лаборатории реактивного движения недавно продемонстрировали ионные двигатели, способные непрерывно работать больше трех лет.

НАЧАЛО ЭРЫ ЭЛЕКТРИЧЕСКИХ РАКЕТНЫХ ДВИГАТЕЛЕЙ

1903 г.: К.Э. Циолковский вывел уравнение движения ракеты, широко используемое для расчета расхода топлива в космических полетах. В 1911 г. он предположил, что электрическое поле может ускорять заряженные частицы для создания реактивной тяги
1906 г.: Роберт Годдард рассмотрел использование электростатического ускорения заряженных частиц для создания реактивной тяги. В 1917 г. он создал и запатентовал двигатель - предшественник современных ионных двигателей
1954 г.: Эрнст Штулингер показал, как оптимизировать характеристики ионного двигателя
1962 г.: Опубликовано первое описание холловского двигателя - более мощного типа плазменных двигателей, - созданного на основе работ советских, европейских и американских исследователей
1962 г.: Адриано Дукати (Adriano Ducati) открыл принцип действия магнитоплаз-модинамического (МПД) двигателя - самого мощного типа плазменных двигателей
1964 г.: Космический аппарат SERT 1 NASA провел первое успешное испытание ионного двигателя в космосе
1972 г.: Советский спутник «Метеор» совершил первый космический полет с использованием холловского двигателя
1999 г.: Космический зонд Deep Space 1 Лаборатории неактивной тяги NASA продемонстрировал первое успешное использование ионного двигателя в качестве главной двигательной установки для преодоления земного тяготения при старте с околоземной орбиты

Характеристики электроракетных двигателей определяются не только скоростью истечения заряженных частиц, но и плотностью тяги - значением силы тяги, приходящимся на единицу площади отверстия, через которое эти частицы истекают. Возможности ионных и аналогичных электростатических двигателей ограничиваются объемным зарядом, который налагает очень низкий предел на достижимую плотность тяги. Дело в том, что по мере прохождения положительных ионов через электростатические сетки двигателя между ними неизбежно накапливается положительный заряд, который уменьшает напряженность электрического поля, ускоряющего ионы.
Из-за этого тяга двигателя зонда Deep Space 1 эквивалентна примерно весу листа бумаги, что очень далеко от тяги двигателей в научно-фантастических фильмах. Для разгона автомобиля с помощью такой силы от нуля до 100 км/ч (при отсутствии сопротивления движению: автомобиль, стоящий на земле, такая сила даже не сдвинет с места. - Прим. пер.) потребовалось бы больше двух суток. В космическом вакууме, который не оказывает сопротивления, сообщить аппарату большую скорость способна даже очень малая сила, если она действует достаточно долго.

Холловский двигатель

Вариант плазменного двигателя, называемый холловским (врезка на стр. 39), свободен от ограничений, налагаемых объемным зарядом, и поэтому способен разгонять космический аппарат до высоких скоростей быстрее, чем ионный двигатель сравнимого размера (благодаря большей плотности тяги). На Западе данная технология получила признание в начале 1990-х гг., на три десятилетия позже начала разработок в бывшем СССР.
Принцип действия двигателя основан на использовании фундаментального эффекта, открытого в 1879 г. Эдвином Холлом (Edwin H. Hall), который был тогда аспирантом в Университете Джонса Хопкинса. Холл показал, что в проводнике, в котором созданы взаимно перпендикулярные электрическое и магнитное поля, возникает электрический ток (называемый холловским) в направлении, перпендикулярном обоим этим полям.
В холловском двигателе плазма создается электрическим разрядом между внутренним положительным электродом (анодом) и наружным отрицательным электродом (катодом). Разряд отрывает электроны от нейтральных атомов газа в промежутке между электродами. Образующаяся плазма ускоряется в направлении выходного отверстия цилиндрического двигателя силой Лоренца, которая возникает в результате взаимодействия приложенного радиального магнитного поля с электрическим током (в данном случае - холловским), который течет в азимутальном направлении, т.е. вокруг центрального электрода. Холловский ток создается движением электронов в электрическом и магнитном полях. В зависимости от располагаемой мощности скорости истечения могут составлять от 10 до 50 км/с.
Этот тип плазменного двигателя свободен от ограничений, налагаемых объемным зарядом, поскольку в нем ускоряется вся плазма (как положительные ионы, так и отрицательные электроны). Поэтому достижимая плотность тяги и, следовательно, ее сила (а значит, и потенциально достижимое значение dV ) оказываются во много раз выше, чем у ионного двигателя таких же размеров. На спутниках на околоземных орбитах уже работает больше 200 холловских двигателей. И именно такой двигатель был использован Европейским космическим агентством для экономичного разгона космического аппарата SMART 1 при полете к Луне.

Размеры холловских двигателей довольно малы, и инженеры пытаются создать такие устройства, чтобы к ним можно было подводить более высокие мощности, необходимые для получения высоких скоростей истечения и значений силы тяги.
Ученые из Лаборатории физики плазмы Принстонского университета достигли определенных успехов, установив на стенках холловского двигателя секционированные электроды, которые формируют электрическое поле таким образом, чтобы сфокусировать плазму в узкий выходной пучок. Конструкция уменьшает бесполезный неосевой компонент тяги и позволяет увеличить ресурс двигателя благодаря тому, что плазменный пучок не соприкасается со стенками двигателя. Немецкие инженеры достигли примерно таких же результатов, применив магнитные поля особой конфигурации. А исследователи Стэнфордского университета показали, что покрытие стенок двигателя прочным поликристаллическим алмазом значительно повышает их стойкость к эрозии под действием плазмы. Все эти усовершенствования сделали холловские двигатели пригодными для дальних космических полетов.

Двигатель следующего поколения

Один из способов дальнейшего повышения плотности тяги состоит в увеличении общего количества плазмы, ускоряемой в двигателе. Но с подъемом плотности плазмы в холловском двигателе растет частота соударений электронов с атомами и ионами, что
мешает электронам переносить холловский ток, необходимый для ускорения. Использовать более плотную плазму позволяет магнитоплазмодинамический (МПД) двигатель, в котором вместо холловского тока используется ток, направленный в основном вдоль электрического поля (врезка слева) и в гораздо меньшей степени подверженный разрушению из-за столкновений с атомами.
В общих чертах МПД-двигатель состоит из центрального катода, расположенного внутри цилиндрического анода большего размера. Газ (обычно пары лития) подается в кольцевой промежуток между катодом и анодом, где ионизуется электрическим током, текущим в радиальном направлении от катода к аноду. Ток создает азимутальное магнитное поле (окружающее центральный катод), а взаимодействие поля и тока порождает силу Лоренца, создающую тягу.
МПД-двигатель размером с обычное ведро способен перерабатывать около мегаватта мощности от солнечного или ядерного источника и позволяет получать скорости истечения от 15 до 60 км/с. Поистине, мал да удал.

Еще одно достоинство МПД-двигателя - возможность дросселирования: скорость истечения и тягу в нем можно регулировать, изменяя силу тока или расход рабочего вещества. Это дает возможность менять тягу двигателя и скорость истечения применительно к потребности оптимизации траектории полета. Интенсивные исследования процессов, ухудшающих характеристики МПД-двигателей и влияющих на срок их службы, в частности плазменной эрозии, нестабильностей плазмы и потерь мощности в ней, позволили создать новые двигатели с высокими характеристиками. В качестве рабочих веществ в них используются пары лития или бария. Атомы этих металлов легко ионизуются, что уменьшает внутренние потери энергии в плазме и дает возможность поддерживать более низкую температуру катода. Применение жидких металлов в качестве рабочих веществ и необычная конструкция катода с каналами, изменяющими характер взаимодействия электрического тока с его поверхностью, помогли существенно уменьшить эрозию катода и создать более надежные МПД-двигатели.
Группа ученых из академических организаций и NASA недавно завершила разработку новейшего «литиевого» МПД-двигателя под названием а2 . потенциально способного доставить к Луне и Марсу космический аппарат с ядерной силовой установкой, несущий большую полезную нагрузку и людей, а также обеспечить полеты автоматических космических станций к внешним планетам Солнечной системы.

Черепаха побеждает

Ионный, холловский и магнитоплазмодинамический - три типа плазменных двигателей, уже нашедших практическое применение. За последние десятилетия исследователями предложено много перспективных вариантов. Разрабатываются двигатели, работающие в импульсном и в непрерывном режиме. В одних плазма создается с помощью электрического разряда между электродами, в других - индуктивным способом с помощью катушки или антенны. Различаются и механизмы ускорения плазмы: с использованием силы Лоренца, путем введения плазмы в создаваемые магнитным способом токовые слои, или с помощью бегущей электромагнитной волны. В одном из типов даже предполагается выбрасывать плазму через невидимые «ракетные сопла», создаваемые с помощью магнитных полей.
Во всех случаях плазменные ракетные двигатели набирают скорость медленнее обычных. Тем не менее благодаря парадоксу «чем медленнее, тем быстрее» они позволяют достичь далеких целей в более короткий срок, так как в итоге разгоняют космический аппарат до скорости значительно большей, чем двигатели на химическом топливе при той же массе топлива. Это позволяет избежать траты времени на отклонения к телам, обеспечивающим эффект гравитационной рогатки. Как в знаменитой истории о медлительной черепахе, которая в итоге обгоняет зайца, в «марафонских» полетах, которых в грядущую эру исследования дальнего космоса будет совершаться все больше, черепаха победит.


Сегодня самые передовые плазменные двигатели способны обеспечить dV до 100 км/с. Этого вполне достаточно для совершения полетов к внешним планетам за разумное время. Один из самых впечатляющих проектов в области исследования дальнего космоса предусматривает доставку на Землю образцов грунта с Титана - самого крупного спутника Сатурна, имеющего, по предположениям ученых, атмосферу, очень похожую на ту, которая окутывала Землю миллиарды лет назад.
Образец с поверхности Титана предоставит ученым редкую возможность поиска признаков химических предшественников жизни. Ракетные двигатели на химическом топливе делают такую экспедицию неосуществимой. Использование гравитационных рогаток увеличило бы время полета более чем на три года. А зонд с «маленьким, да удаленьким» плазменным двигателем сможет совершить такое путешествие значительно быстрее.

Перевод: И.Е. Сацевич

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

    Benefits of Nuclear Electric Propulsion for Outer Planet Exploration. G. Woodcock et al. American institute of Aeronautics and Astronautics, 2002.

    Electric Propulsion. Robert G. Jahn and Edgar Y. Choueiri in Encyclopedia of Physical Science and Technology. Third edition. Academic Press, 2002.

    A Critical History of Electric Propulsion: The First 50 Years (1906-1956). Edgar Y. Choueiri in Journal of Propulsion and Power, Vol. 20, No. 2, pages 193-203; 2004.

__________________________________________________ [ оглавление ]

Оптимизирован под Internet Explorer 1024X768
средний размер шрифта
Дизайн A Semenov

Этот обширный класс двигателей объединяет различные типы двигателей, которые очень интенсивно разрабатываются в настоящее время. Разгон рабочего тела до определенной скорости истечения производится за счет электрической энергии. Энергия получается от атомной или солнечной электростанции, находящейся на борту космического корабля (в принципе даже от химической батареи). Мыслимы многочисленные типы бортовых энергетических установок .

Схемы разрабатываемых электрических двигателей чрезвычайно разнообразны. Мы рассмотрим три основные группы электрических двигателей , различающиеся по способу, с помощью которого происходит выброс рабочего тела из ракеты. (Возможны, однако, и иные способы классификации электрических двигателей

Электротермические двигатели. Эти двигатели, как и все рассматривавшиеся нами до сих пор, относятся к тепловым. Нагретое до высокой температуры рабочее тело (водород) превращается в плазму - электрически нейтральную смесь

положительных ионов и электронов. Методы электрического нагрева могут быть различны: нагрев в электрической дуге (рис. 10), с помощью вольфрамовых нагревательных элементов, посредством электрического разряда и другие

Рис. 10. Схема электродугового двигателя

При лабораторных испытаниях электродуговых двигателей достигнута скорость истечения порядка Если удастся осуществить магнитную изоляцию плазмы от стенок тяговой камеры, температура плазмы сможет быть очень высока и скорость истечения доведена до Реактивные ускорения в электротермических двигателях будут порядка .

Первый в мире электротермический двигатель был разработан в 1929-1933 гг. в Советском Союзе под] руководством В. П. Глушко в знаменитой Газодинамической лаборатории .

Электростатические (ионные) двигатели . В этих двигателях мы впервые сталкиваемся с разгоном рабочего тела «холодным» путем. Частицы рабочего тела (пары легко ионизуемых металлов, например рубидия или цезия) теряют свои электроны в ионизаторе и разгоняются до большой скорости в электрическом поле. Чтобы электрический заряд струи заряженных частиц позади аппарата не препятствовал дальнейшему истечению, эта струя нейтрализуется вне его выбрасыванием отнятых у атомов электронов (рис. 11).

Рис. 11. Принципиальная схема ноьного двигателя

В ионном двигателе не существует температурных ограничений. Поэтому в принципе возможно достижение сколь угодно больших скоростей истечения, вплоть до приближающихся к скорости света . Однако слишком высокие скорости истечения приходится исключить из рассмотрения, так как они потребовали бы огромной мощности электростанции на борту корабля.

Рис. 12. Схема образования движущихся плазмоидов в «импульсном» плазменном двигателе 11.18].

При этом масса двигательной установки возросла бы гораздо сильнее, чем тяга, и в результате сильно бы снизилось реактивное ускорение. Цель космического полета, его продолжительность, качество энергетической установки определяют наилучшую, оптимальную для уданной задачи скорость истечения. Она находится, по мнению одних авторов, в пределах , по мнению других, , . Ионные двигатели будут способны сообщить реактивное ускорение порядка .

Большие надежды возлагаются некоторыми специалистами на особый тип электростатических двигателей - коллоидные двигатели. В этих двигателях ускоряются большие заряженные молекулы и даже группы молекул или пылинки диаметром около 1 микрона .

Рис. 13. Схема магнитогидродинамического двигателя со скрещенными полями.

Магнитогидродинамические (электродинамические, электромагнитные, магнит -плазменные, «плазменные») двигатли . Эта группа двигателей объединяет огромное разнообразие схем, в которых плазма разгоняется до некоторой скорости истечения изменением магнитного поля или взаимодействием электрического и магнитного полей. Конкретные методы разгона плазмы, а также ее получения весьма различны. В плазменном двигателе (рис. 12) сгусток плазмы («плазмоид») разгоняется магнитным давлением . В «двигателе со скрещенными электрическим и магнитным полями» (рис. 13) через плазму,

помещенную в магнитное поле, пропускается электрический ток (плазма - хороший проводник), и в результате плазма приобретает скорость (подобно проволочной рамке с током, помещенной в магнитном поле) . Оптимальная скорость истечения для магнитогидродинамических двигателей, вероятно, будет порядка при реактивном ускорении

В лабораторных испытаниях магнитогидродинамических двигателей достигнуты скорости истечения до .

Следует отметить, что во многих случаях отнести двигатель к тому или иному классу бывает затруднительно.

Электрические двигатели с забором рабочего тела из верхней атмосферы . Летательный аппарат, движущийся в верхних слоях атмосферы, может использовать разреженную внешнюю среду в качестве рабочего тела для электрического двигателя. Подобный электрический двигатель аналогичен воздушно-реактивному двигателю в классе химических двигателей. Поступающий через воздухозаборник газ может использоваться в качестве рабочего тела или непосредственно, или после накопления (и, возможно, сжижения) его в баках. Возможен также вариант, при котором в баках одного летательного аппарата будет накапливаться рабочее тело и перекачиваться затем в баки другого аппарата.

Важным преимуществом всех типов электрических двигателей является простота регулировки тяги. Серьезной трудностью - необходимость освобождения от избытка тепла, выделяемого ядерным реактором. Этот избыток не уносится рабочим телом и не отдается окружающей среде, которая практически отсутствует в мировом пространстве. Освободиться от него можно лишь с помощью радиаторов, имеющих большую поверхность.

В 1964 г. в США было проведено первое успешное испытание в течение 31 мин ионного двигателя, установленного на контейнере, запущенном на баллистическую траекторию. В реальных условиях космоса ионные и плазменные двигатели быливпервые испытаны на советском корабле «Восход-1» и советской станции «Зонд-2», запущенных в 1964 г. («Зонд-2» - всторону Марса) ; наряду с обычными они использовались в системах ориентации. В апреле 1965 г. ионный двигатель на жидком цезии испытывался вместе с ядерным реактором «Снеп-10А» на американском спутнике Земли, развивая тягу (вместо Цезиевые ионные двигатели с расчетной регулируемой тягой и электротермические двигатели, использующие в качестве рабочего тела жидкий аммиак и развивающие тягу до испытывались с переменным успехом на спутниках серии запускавшихся в США с 1966 г.

Отличительной особенностью реактивных электрических двигателей состоит в том, что источник энергии и рабочее вещество разделены, а передача энергии от источника к рабочему веществу осуществляется с помощью электромагнитных взаимодействий. Это позволяет получить высокие скорости истечения рабочего вещества. Это, в свою очередь, делает такой класс двигателей наиболее экономичным при выполнении транспортных работ в космосе. Вниманию посетителей сайта предлагается краткое описание некоторых двигателей этого класса.

Рисунок 22 - Электрический реактивный двигатель

Среди класса электрореактивных двигателей основное внимание уделяется т.н. плазменно-ионному двигателю.

Отличительная его особенность в том, что в нём используется разряд с осциллирующими электронами. Двигаясь в продольном магнитном поле сравнительно небольшой величины, электроны не могут сразу попасть на наружный кольцевой электрод - анод и участвуют в неоднократных ионизирующих столкновениях. Ускорение ионов происходит в продольном электрическом поле, а для компенсации на выходе ускорителя их объёмного заряда используется катод - компенсатор.

Плазменно-ионные двигатели обладают высоким КПД в широком диапазоне удельных импульсов. Они характеризуются, к тому же, низкими значениями плотности тяги. Т.е. удельная масса двигателя выше.

Плазменно-ионные двигатели прошли модельные испытания, однако полномасштабные испытания до сих пор не выполнены.

Для решения задач управления и ориентации космических аппаратов наиболее удобными оказываются импульсные плазменные двигатели. И наиболее перспективные в этом классе электрореактивных двигателей являются эрозионные плазменные двигатели.

В этих двигателях плазменный сгусток создаётся при пропускании большого тока, возникающего при разряде электрического конденсатора вдоль поверхности находящегося между электродами диэлектрика, материал которого испаряется, ионизуется и ускоряется под действием электромагнитных сил или газодинамических сил.

Импульсный плазменный двигатель обладает тем преимуществом, что возможно большое число включений (до 109); малым значением одного импульса (около 100 мкН*с); отсутствием импульса последействия.

Электронагревные реактивные двигатели отличаются тем, что электрическая энергия в них расходуется на нагрев и ускорение рабочего вещества при прохождении его через теплообменник. У двигателей этого типа минимальные энергетические затраты на создание тяги. В результате экспериментальных исследований было установлено, что оптимальным рабочим веществом для них является гидразин (H2N)2.

Рисунок 23 - Электрический реактивный двигатель

Гидразин представляет собой однокомпонентное эндотермическое топливо, поэтому при его химическом разложении на водород и азот в присутствии катализатора выделяется энергия. Это позволило создать целый особый класс электрореактивных двигателей - каталитические двигатели. Существуют и термокаталитические двигатели, в которых более простые катализаторы, выполненные в форме опресованных проволочных спиралей, обладают большим ресурсом.

Наименьшие полученные значения тяги для таких двигателей составляют порядка 10 мН.

Область применения электрореактивных двигателей:

  • 1. Управление движением космических кораблей.
  • 2. Корректировка орбиты, компенсация торможения аппаратов в верхних слоях атмосферы, перевод с одной орбиты на другую
  • 3. Транспортные операции, связанные с осуществлением полётов к Луне и другим планетам Системы

Основные характеристики плазменно-ионных двигателей:

  • 1. Электрическая потребляемая мощность - 1 кВт.
  • 2. Создаваемая тяга - 27 мН
  • 3. Скорость истечения - 42 км/с
  • 4. Тяговый КПД - 67%
  • 5. Напряжение - 2800 В
  • 6. Рабочее вещество - ртуть